Discontinuous Galerkin;
High order;
GPU;
Parallel computation;
Many-core;
Maxwell's equations;
D O I:
10.1016/j.jcp.2009.06.041
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
Discontinuous Galerkin (DG) methods for the numerical solution of partial differential equations have enjoyed considerable success because they are both flexible and robust: They allow arbitrary unstructured geometries and easy control of accuracy without compromising simulation stability. Lately, another property of DG has been growing in importance: The majority of a DG operator is applied in an element-local way, with weak penalty-based element-to-element coupling. The resulting locality in memory access is one of the factors that enables DG to run on off-the-shelf, massively parallel graphics processors (GPUs). In addition, DG's high-order nature lets it require fewer data points per represented wavelength and hence fewer memory accesses, in exchange for higher arithmetic intensity. Both of these factors work significantly in favor of a GPU implementation of DG. Using a single US$400 Nvidia GTX 280 GPU, we accelerate a solver for Maxwell's equations on a general 3D unstructured grid by a factor of around 50 relative to a serial computation on a current-generation CPU. In many cases, our algorithms exhibit full use of the device's available memory bandwidth. Example computations achieve and surpass 200 gigaflops/s of net application-level floating point work. In this article, we describe and derive the techniques used to reach this level of performance. In addition, we present comprehensive data on the accuracy and runtime behavior of the method. (C) 2009 Elsevier Inc. All rights reserved.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp LSEC, Beijing 100190, Peoples R China
Lyu, Maohui
Bokil, Vrushali A.
论文数: 0引用数: 0
h-index: 0
机构:
Oregon State Univ, Coll Sci, Dept Math, Corvallis, OR 97331 USAChinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp LSEC, Beijing 100190, Peoples R China
Bokil, Vrushali A.
Cheng, Yingda
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Computat Math Sci & Engn, Dept Math, E Lansing, MI 48824 USAChinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp LSEC, Beijing 100190, Peoples R China
Cheng, Yingda
Li, Fengyan
论文数: 0引用数: 0
h-index: 0
机构:
Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USAChinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp LSEC, Beijing 100190, Peoples R China
机构:
Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USAStanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
Cecka, Cris
Lew, Adrian J.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USAStanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
Lew, Adrian J.
Darve, E.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USAStanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA