Latent space models for network perception data

被引:3
|
作者
Sewell, Daniel K. [1 ]
机构
[1] Univ Iowa, Dept Biostat, Iowa City, IA 52242 USA
关键词
cognitive social structures; latent space network model; network estimation; social network analysis; visualization; COGNITIVE-SOCIAL STRUCTURES; INFORMANT ACCURACY; POLITICAL LANDSCAPE; PREDICTORS; COMMUNICATION; CONCORDANCE; FRIENDS; HEALTH; BIASES;
D O I
10.1017/nws.2019.1
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Social networks, wherein the edges represent nonbehavioral relations such as friendship, power, and influence, can be difficult to measure and model. A powerful tool to address this is cognitive social structures (Krackhardt, D. (1987). Cognitive social structures. Social Networks, 9(2), 109-134.), where the perception of the entire network is elicited from each actor. We provide a formal statistical framework to analyze informants' perceptions of the network, implementing a latent space network model that can estimate, e.g., homophilic effects while accounting for informant error. Our model allows researchers to better understand why respondents' perceptions differ. We also describe how to construct a meaningful single aggregated network that ameliorates potential respondent error. The proposed method provides a visualization method, an estimate of the informants' biases and variances, and we describe a method for sidestepping forced-choice designs.
引用
收藏
页码:160 / 179
页数:20
相关论文
共 50 条
  • [31] Community detection in sparse latent space models
    Gao, Fengnan
    Ma, Zongming
    Yuan, Hongsong
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [32] Community detection in sparse latent space models
    Gao, Fengnan
    Ma, Zongming
    Yuan, Hongsong
    Journal of Machine Learning Research, 2022, 23
  • [33] A Latent Space Network Model for Social Influence
    Sweet, Tracy
    Adhikari, Samrachana
    PSYCHOMETRIKA, 2020, 85 (02) : 251 - 274
  • [34] A hierarchical latent space network model for mediation
    Sweet, Tracy M.
    Adhikari, Samrachana
    NETWORK SCIENCE, 2022, 10 (02) : 113 - 130
  • [35] A Latent Space Network Model for Social Influence
    Tracy Sweet
    Samrachana Adhikari
    Psychometrika, 2020, 85 : 251 - 274
  • [36] Latent space approaches to social network analysis
    Hoff, PD
    Raftery, AE
    Handcock, MS
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (460) : 1090 - 1098
  • [37] Latent Markov Models for longitudinal data
    Maruotti, Antonello
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2014, 72 (03): : 367 - 368
  • [38] Latent classification models for binary data
    Langseth, Helge
    Nielsen, Thomas D.
    PATTERN RECOGNITION, 2009, 42 (11) : 2724 - 2736
  • [39] Latent Dirichlet Allocation and Hidden Markov Models to Identify Public Perception of Sustainability in Social Media Data
    Pinna, Luigi Cao
    Miller, Claire
    Scott, Marian
    DEVELOPMENTS IN STATISTICAL MODELLING, IWSM 2024, 2024, : 14 - 20
  • [40] Latent trajectory models for space-time analysis: An application in deciphering spatial panel data
    An, Li
    Tsou, Ming-Hsiang
    Spitzberg, Brian H.
    Gupta, Dipak K.
    Gawron, J. Mark
    GEOGRAPHICAL ANALYSIS, 2016, 48 (03) : 314 - 336