Grinstead's conjecture is true for graphs with a small clique number

被引:3
|
作者
Kashiwabara, Kenji
Sakuma, Tadashi
机构
[1] Univ Tokyo, Grad Sch Arts & Sci, Dept Syst Sci, Meguro Ku, Tokyo 1538902, Japan
[2] Yamagata Univ, Fac Educ Art & Sci, Yamagata 9908560, Japan
关键词
circular partitionable graph; CGPW-graph; Grinstead's conjecture;
D O I
10.1016/j.disc.2005.12.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will show that Grinstead's Conjecture holds true if min(alpha(G), omega(G)) <= 8. In other words; a circular partitionable graph G satisfying min(alpha(G), omega(G))<= 8 is always a so-called "CGPW-graph". (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2572 / 2581
页数:10
相关论文
共 50 条
  • [31] The clique number and some Hamiltonian properties of graphs
    Li, Rao
    CONTRIBUTIONS TO MATHEMATICS, 2021, 4 : 20 - 22
  • [32] The Zagreb indices of graphs with a given clique number
    College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Appl Math Lett, 6 (1026-1030):
  • [33] On Local Connectivity of Graphs with Given Clique Number
    holtkamp, Andreas
    Volkmann, Lutz
    JOURNAL OF GRAPH THEORY, 2010, 63 (03) : 192 - 197
  • [34] NoteOn the Structure of Graphs with Bounded Clique Number
    Stephan Brandt
    Combinatorica, 2003, 23 : 693 - 696
  • [35] CHROMATIC NUMBER VERSUS COCHROMATIC NUMBER IN GRAPHS WITH BOUNDED CLIQUE NUMBER
    ERDOS, P
    GIMBEL, J
    STRAIGHT, HJ
    EUROPEAN JOURNAL OF COMBINATORICS, 1990, 11 (03) : 235 - 240
  • [36] Spectral extrema of graphs with bounded clique number and matching number
    Wang, Hongyu
    Hou, Xinmin
    Ma, Yue
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 669 : 125 - 135
  • [37] Clique number and distance spectral radii of graphs
    Zhai, Mingqing
    Yu, Guanglong
    Shu, Jinlong
    ARS COMBINATORIA, 2012, 104 : 385 - 392
  • [38] Relative Clique Number of Planar Signed Graphs
    Das, Sandip
    Ghosh, Prantar
    Mj, Swathyprabhu
    Sen, Sagnik
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016, 2016, 9602 : 326 - 336
  • [39] Clique-transversal number in cubic graphs
    Shan, Erfang
    Liang, Zuosong
    Cheng, T. C. E.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2008, 10 (02): : 115 - 123
  • [40] On the clique number of noisy random geometric graphs
    Kahle, Matthew
    Tian, Minghao
    Wang, Yusu
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (01) : 242 - 279