MULTIDIMENSIONAL STABILITY OF PLANAR TRAVELING WAVES FOR THE SCALAR NONLOCAL ALLEN-CAHN EQUATION

被引:9
|
作者
Faye, Gregory [1 ,2 ]
机构
[1] CAMS Ecole Hautes Etud Sci Soci, F-75013 Paris, France
[2] CNRS, UMR 5219, Inst Math Toulouse, F-31062 Toulouse, France
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Nonlocal equation; traveling wave; nonlinear stability; REACTION-DIFFUSION EQUATION; VISCOUS CONSERVATION-LAWS; ASYMPTOTIC-BEHAVIOR; EVOLUTION-EQUATIONS; SPECTRAL-ANALYSIS; MODEL;
D O I
10.3934/dcds.2016.36.2473
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the multidimensional stability of planar traveling waves for scalar nonlocal Allen-Cahn equations using semigroup estimates. We show that if the traveling wave is spectrally stable in one space dimension, then it is stable in n-space dimension, n >= 2, with perturbations of the traveling wave decaying like t(-(n-1)/4) as t -> +infinity in H-k(R-n) for k >= [n+1/2].
引用
收藏
页码:2473 / 2496
页数:24
相关论文
共 50 条
  • [31] Analysis and numerical methods for nonlocal-in-time Allen-Cahn equation
    Li, Hongwei
    Yang, Jiang
    Zhang, Wei
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (06)
  • [32] A Nonlocal Image Inpainting Problem Using the Linear Allen-Cahn Equation
    Brkic, Antun Lovro
    Novak, Andrej
    ADVANCES IN NON-INTEGER ORDER CALCULUS AND ITS APPLICATIONS, 2020, 559 : 229 - 239
  • [33] REPRESENTATION FORMULAS OF SOLUTIONS AND BIFURCATION SHEETS TO A NONLOCAL ALLEN-CAHN EQUATION
    Mori, Tatsuki
    Kuto, Kousuke
    Tsujikawa, Tohru
    Yotsutani, Shoji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (08) : 4907 - 4925
  • [34] The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations
    Taniguchi, Masaharu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (05) : 2103 - 2130
  • [35] Existence and global stability of traveling curved fronts in the Allen-Cahn equations
    Ninomiya, H
    Taniguchi, M
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (01) : 204 - 233
  • [36] Large time behavior of disturbed planar fronts in the Allen-Cahn equation
    Matano, Hiroshi
    Nara, Mitsunori
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (12) : 3522 - 3557
  • [37] Periodic solutions for the Allen-Cahn equation
    Huang, Rui
    Huang, Haochuan
    Ji, Shanming
    Yin, Jingxue
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [38] Periodic solutions for the Allen-Cahn equation
    Rui Huang
    Haochuan Huang
    Shanming Ji
    Jingxue Yin
    Advances in Difference Equations, 2015
  • [39] The Allen-Cahn equation on closed manifolds
    Gaspar, Pedro
    Guaraco, Marco A. M.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (04)
  • [40] Heteroclinic traveling waves of two-dimensional parabolic Allen-Cahn systems
    Oliver-Bonafoux, Ramon
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2025, 42 (01): : 209 - 280