EXPONENTIAL CONVERGENCE FOR THE 3D STOCHASTIC CUBIC GINZBURG-LANDAU EQUATION WITH DEGENERATE NOISE

被引:1
|
作者
Zheng, Yan [1 ]
Huang, Jianhua [1 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
来源
关键词
Stochastic Ginzburg-Landau equations; exponential mixing; ergodicity; degenerate noise; NAVIER-STOKES EQUATIONS; ERGODICITY;
D O I
10.3934/dcdsb.2019075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The current paper is devoted to 3D stochastic Ginzburg-Landau equation with degenerate random forcing. We prove that the corresponding Markov semigroup possesses an exponentially attracting invariant measure. To accomplish this, firstly we establish a type of gradient inequality, which is also essential to proving asymptotic strong Feller property. Then we prove that the corresponding dynamical system possesses a strong type of Lyapunov structure and is of a relatively weak form of irreducibility.
引用
收藏
页码:5621 / 5632
页数:12
相关论文
共 50 条
  • [41] Convergence of a class of degenerate Ginzburg-Landau functionals and regularity for a subelliptic harmonic map equation
    Franchi, Bruno
    Serra, Elena
    JOURNAL D ANALYSE MATHEMATIQUE, 2006, 100 (1): : 281 - 322
  • [42] Vortices in a stochastic parabolic Ginzburg-Landau equation
    Olga Chugreeva
    Christof Melcher
    Stochastics and Partial Differential Equations: Analysis and Computations, 2017, 5 : 113 - 143
  • [43] The exact solutions of the stochastic Ginzburg-Landau equation
    Mohammed, Wael W.
    Ahmad, Hijaz
    Hamza, Amjad E.
    ALy, E. S.
    El-Morshedy, M.
    Elabbasy, E. M.
    RESULTS IN PHYSICS, 2021, 23
  • [44] Asymptotic behavior of 2D generalized stochastic Ginzburg-Landau equation with additive noise
    Li, Dong-long
    Guo, Bo-ling
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (08) : 945 - 956
  • [45] Stabilization of dark solitons in the cubic Ginzburg-Landau equation
    Efremidis, N
    Hizanidis, K
    Nistazakis, HE
    Frantzeskakis, DJ
    Malomed, BA
    PHYSICAL REVIEW E, 2000, 62 (05) : 7410 - 7414
  • [46] The Existence of Exponential Attractor for Discrete Ginzburg-Landau Equation
    Du, Guangyin
    Zhu, Zeqi
    Zhao, Caidi
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [47] The cubic complex Ginzburg-Landau equation for a backward bifurcation
    Popp, S
    Stiller, O
    Kuznetsov, E
    Kramer, L
    PHYSICA D-NONLINEAR PHENOMENA, 1998, 114 (1-2) : 81 - 107
  • [48] Quasiperiodic solutions for the cubic complex Ginzburg-Landau equation
    Cong, Hongzi
    Liu, Jianjun
    Yuan, Xiaoping
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (06)
  • [49] Stochastic complex Ginzburg-Landau equation with space-time white noise
    Hoshino, Masato
    Inahama, Yuzuru
    Naganuma, Nobuaki
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [50] Stochastic Ginzburg-Landau equation on a half-line driven by the multiplicative noise
    Juarez-Campos, B.
    Kaikina, E., I
    Vazquez-Esquivel, A. V.
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (04)