VERIFICATION OF THE SEA ICE CONCENTRATION RETRIEVALS FROM THE MTVZA-GYA MEASUREMENTS USING AMSR2 SATELLITE PRODUCT.

被引:0
|
作者
Zabolotskikh, Elizaveta [1 ]
Balashova, E. A. [1 ]
Azarov, S. M. [1 ]
机构
[1] Russian State Hydrometeorol Univ, Satellite Oceanog Lab, St Petersburg, Russia
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
基金
俄罗斯科学基金会;
关键词
Arctic; AMSR2; MTVZA-GYa; sea ice concentration; retrieval algorithms;
D O I
10.1109/IGARSS46834.2022.9884052
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this study we have verified the algorithms for the Arctic sea ice concentration (SIC) retrieval from the data of the Russian satellite microwave imager/sounder MTVZA-GYa. The algorithms are based on the polarization differences (PD), measured by the MTVZA-GYa at the frequencies of 10.6 and 36.7 GHz. Verification is done with the SIC satellite product based on the data of the Advanced Microwave Scanning Radiometer 2 (AMSR2) produced with an advanced algorithm from PD measurements at 89 GHz. Verification is done using collocated in time and space AMSR2 and MTVZA-GYa measurements taken in 2020. Analysis of additional high resolution Sentinel-1 Synthetic Aperture Radar (SAR) data have shown that the usage of low frequency MTVZA-GYa PD measurements allow avoiding underestimation of SIC for some areas featured to high frequency AMSR2 PD measurements.
引用
收藏
页码:3826 / 3829
页数:4
相关论文
共 50 条
  • [21] Resolution enhanced sea ice concentration: a new algorithm applied to AMSR2 microwave radiometry data
    Rusin, Jozef
    Lavergne, Thomas
    Doulgeris, Anthony P.
    Scott, K. Andrea
    ANNALS OF GLACIOLOGY, 2024, 65
  • [22] Validation of an AMSR2 Thin-Ice Thickness Algorithm for Global Sea-Ice-Covered Oceans Using Satellite and In Situ Observations
    Nakata, Kazuki
    Kachi, Misako
    Shimada, Rigen
    Yoshizawa, Eri
    Ito, Masato
    Ohshima, Kay I.
    REMOTE SENSING, 2025, 17 (01)
  • [23] Triple Collocation-Based Merging of Winter Snow Depth Retrievals on Arctic Sea Ice Derived From Three Different Algorithms Using AMSR2
    He, Lian
    Xue, Binghua
    Hui, Fengming
    Cheng, Xiao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [24] Retrieval of Total Precipitable Water from Meteor-M No. 2-2 MTVZA-GYa Data Using a Neural Network Algorithm
    A. A. Filei
    A. I. Andreev
    M. O. Kuchma
    A. B. Uspensky
    Russian Meteorology and Hydrology, 2022, 47 : 272 - 280
  • [25] Estimation of Sea Ice Production in the Bering Sea From AMSR-E and AMSR2 Data, With Special Emphasis on the Anadyr Polynya
    Ohshima, Kay, I
    Tamaru, Naoya
    Kashiwase, Haruhiko
    Nihashi, Sohey
    Nakata, Kazuki
    Iwamoto, Katsushi
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2020, 125 (07)
  • [26] Performance of Operational AMSR2 Based Sea Ice Concentration Retrieval Algorithms under Extreme Weather Conditions
    Zhivotovskaya, M. A.
    Zabolotskikh, E., V
    Chapron, B.
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 3910 - 3914
  • [27] Retrieval of Total Precipitable Water from Meteor-M No. 2-2 MTVZA-GYa Data Using a Neural Network Algorithm
    Filei, A. A.
    Andreev, A., I
    Kuchma, M. O.
    Uspensky, A. B.
    RUSSIAN METEOROLOGY AND HYDROLOGY, 2022, 47 (04) : 272 - 280
  • [28] Sea Ice and Atmospheric Parameter Retrieval From Satellite Microwave Radiometers: Synergy of AMSR2 and SMOS Compared With the CIMR Candidate Mission
    Scarlat, Raul Cristian
    Spreen, Gunnar
    Heygster, Georg
    Huntemann, Marcus
    Patilea, Catalin
    Pedersen, Leif Toudal
    Saldo, Roberto
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2020, 125 (03)
  • [29] Retrieval of Summer Sea Ice Concentration in the Pacific Arctic Ocean from AMSR2 Observations and Numerical Weather Data Using Random Forest Regression
    Han, Hyangsun
    Lee, Sungjae
    Kim, Hyun-Cheol
    Kim, Miae
    REMOTE SENSING, 2021, 13 (12)
  • [30] A deep learning approach to retrieve cold-season snow depth over Arctic sea ice from AMSR2 measurements
    Li, Haili
    Chang-Qing Ke
    Zhu, Qinghui
    Li, Mengmeng
    Shen, Xiaoyi
    REMOTE SENSING OF ENVIRONMENT, 2022, 269