Efficient algorithm for transversal of disjoint convex polygons

被引:3
|
作者
Chin, FYL
Wang, FL [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
[2] Univ Hong Kong, Dept Comp Sci & Informat Syst, Hong Kong, Hong Kong, Peoples R China
关键词
computational geometry; transversal; disjoint convex polygon; stabber;
D O I
10.1016/S0020-0190(01)00322-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a set S of n disjoint convex polygons {P-i \ 1 less than or equal to i less than or equal to n} in a plane, each with k(i) vertices, the transversal problem is to determine whether there exists a straight line that goes through every polygon in S. We show that the transversal problem can be solved in O(N + n log n) time, where N = Sigma(i)(n) (= 1) k(i) is the total number of vertices of the polygons. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:141 / 144
页数:4
相关论文
共 50 条
  • [41] Novel algorithm for generating basis convex hexagonal polygons and polyhedrons
    Khan, Mohd. Sherfuddin
    Rajan, E. G.
    Mankar, Vijay H.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 6): : 14253 - 14267
  • [42] Efficient Algorithms for Touring a Sequence of Convex Polygons and Related Problems
    Tan, Xuehou
    Jiang, Bo
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2017), 2017, 10185 : 613 - 626
  • [43] A practical algorithm for decomposing polygonal domains into convex polygons by diagonals
    Fernandez, Jose
    Toth, Boglarka
    Canovas, Lazaro
    Pelegrin, Blas
    TOP, 2008, 16 (02) : 367 - 387
  • [44] NUMERICAL STABILITY OF A CONVEX-HULL ALGORITHM FOR SIMPLE POLYGONS
    JAROMCZYK, JW
    WASILKOWSKI, GW
    ALGORITHMICA, 1993, 10 (06) : 457 - 472
  • [45] A NEW LINEAR CONVEX-HULL ALGORITHM FOR SIMPLE POLYGONS
    BHATTACHARYA, BK
    ELGINDY, H
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (01) : 85 - 88
  • [46] A practical algorithm for decomposing polygonal domains into convex polygons by diagonals
    José Fernández
    Boglárka Tóth
    Lázaro Cánovas
    Blas Pelegrín
    TOP, 2008, 16 : 367 - 387
  • [48] Novel algorithm for generating basis convex hexagonal polygons and polyhedrons
    Mohd. Sherfuddin Khan
    E. G. Rajan
    Vijay H. Mankar
    Cluster Computing, 2019, 22 : 14253 - 14267
  • [49] Parallel algorithm for determining possible collision between convex polygons
    Li, Qinghua
    Gao, Yan
    Cui, Guohua
    Huazhong Ligong Daxue Xuebao/Journal Huazhong (Central China) University of Science and Technology, 1994, 22 (06):
  • [50] Fast algorithm to calculate collision point between convex polygons
    Wang, Zhaoqi
    Zhao, Qinping
    Wang, Chengwei
    Ruan Jian Xue Bao/Journal of Software, 1999, 10 (12): : 1253 - 1258