Expert-driven trace clustering with instance-level constraints

被引:9
|
作者
De Koninck, Pieter [1 ]
Nelissen, Klaas [1 ]
vanden Broucke, Seppe [1 ]
Baesens, Bart [1 ,2 ]
Snoeck, Monique [1 ]
De Weerdt, Jochen [1 ]
机构
[1] Katholieke Univ Leuven, Res Ctr Management Informat LIRIS, Naamsestr 69, B-3000 Leuven, Belgium
[2] Univ Southampton, Southampton Business Sch, Southampton, Hants, England
基金
欧盟地平线“2020”;
关键词
Trace clustering; Process mining; Semi-supervised learning; Constrained clustering; CONFORMANCE CHECKING; PROCESS DISCOVERY;
D O I
10.1007/s10115-021-01548-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Within the field of process mining, several different trace clustering approaches exist for partitioning traces or process instances into similar groups. Typically, this partitioning is based on certain patterns or similarity between the traces, or driven by the discovery of a process model for each cluster. The main drawback of these techniques, however, is that their solutions are usually hard to evaluate or justify by domain experts. In this paper, we present two constrained trace clustering techniques that are capable to leverage expert knowledge in the form of instance-level constraints. In an extensive experimental evaluation using two real-life datasets, we show that our novel techniques are indeed capable of producing clustering solutions that are more justifiable without a substantial negative impact on their quality.
引用
收藏
页码:1197 / 1220
页数:24
相关论文
共 50 条
  • [31] ION: Instance-level Object Navigation
    Li, Weijie
    Song, Xinhang
    Bai, Yubing
    Zhang, Sixian
    Jiang, Shuqiang
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4343 - 4352
  • [32] Dataset Enhancement with Instance-Level Augmentations
    Kupyn, Orest
    Rupprecht, Christian
    COMPUTER VISION - ECCV 2024, PT XXIII, 2025, 15081 : 384 - 402
  • [33] Discriminative and Consistent Similarities in Instance-Level Multiple Instance Learning
    Rastegari, Mohammad
    Hajishirzi, Hannaneh
    Farhadi, Ali
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 740 - 748
  • [34] Instance-Level Label Propagation with Multi-Instance Learning
    Wang, Qifan
    Chechik, Gal
    Sun, Chen
    Shen, Bin
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2943 - 2949
  • [35] A framework for expert-driven subpopulation discovery and evaluation using subspace clustering for epidemiological data
    Hielscher, Tommy
    Niemann, Uli
    Preim, Bernhard
    Voelzke, Henry
    Ittermann, Till
    Spiliopoulou, Myra
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 113 : 147 - 160
  • [36] EXPLORING INSTANCE-LEVEL UNCERTAINTY FOR MEDICAL DETECTION
    Yang, Jiawei
    Liang, Yuan
    Zhang, Yao
    Song, Weinan
    Wang, Kun
    He, Lei
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 448 - 452
  • [37] Reversible Recursive Instance-level Object Segmentation
    Liang, Xiaodan
    Wei, Yunchao
    Shen, Xiaohui
    Jie, Zequn
    Feng, Jiashi
    Lin, Liang
    Yan, Shuicheng
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 633 - 641
  • [38] A New Benchmark for Instance-Level Image Classification
    Kang, Kai
    Pang, Gangming
    Zhao, Xun
    Wang, Jiabao
    Li, Yang
    IEEE ACCESS, 2020, 8 : 70306 - 70315
  • [39] Securing instance-level interactions in web services
    Zhang, DC
    Xu, J
    ISADS 2005: INTERNATIONAL SYMPOSIUM ON AUTONOMOUS DECENTRALIZED SYSTEMS,PROCEEDINGS, 2005, : 443 - 450
  • [40] Unsupervised Adversarial Instance-Level Image Retrieval
    Bai, Cong
    Li, Hongkai
    Zhang, Jinglin
    Huang, Ling
    Zhang, Lu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2199 - 2207