Terminology Translation in Low-Resource Scenarios

被引:2
|
作者
Haque, Rejwanul [1 ]
Hasanuzzaman, Mohammed [2 ]
Way, Andy [1 ]
机构
[1] Dublin City Univ, Sch Comp, Dublin 9, Glasnevin, Ireland
[2] Cork Inst Technol, Dept Comp Sci, Cork T12 P928, Ireland
基金
爱尔兰科学基金会;
关键词
machine translation; terminology translation; phrase-based statistical machine translation; neural machine translation; terminology translation evaluation;
D O I
10.3390/info10090273
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Term translation quality in machine translation (MT), which is usually measured by domain experts, is a time-consuming and expensive task. In fact, this is unimaginable in an industrial setting where customised MT systems often need to be updated for many reasons (e.g., availability of new training data, leading MT techniques). To the best of our knowledge, as of yet, there is no publicly-available solution to evaluate terminology translation in MT automatically. Hence, there is a genuine need to have a faster and less-expensive solution to this problem, which could help end-users to identify term translation problems in MT instantly. This study presents a faster and less expensive strategy for evaluating terminology translation in MT. High correlations of our evaluation results with human judgements demonstrate the effectiveness of the proposed solution. The paper also introduces a classification framework, TermCat, that can automatically classify term translation-related errors and expose specific problems in relation to terminology translation in MT. We carried out our experiments with a low resource language pair, English-Hindi, and found that our classifier, whose accuracy varies across the translation directions, error classes, the morphological nature of the languages, and MT models, generally performs competently in the terminology translation classification task.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Machine Translation in Low-Resource Languages by an Adversarial Neural Network
    Sun, Mengtao
    Wang, Hao
    Pasquine, Mark
    Hameed, Ibrahim A.
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [32] Unsupervised Source Hierarchies for Low-Resource Neural Machine Translation
    Currey, Anna
    Heafield, Kenneth
    RELEVANCE OF LINGUISTIC STRUCTURE IN NEURAL ARCHITECTURES FOR NLP, 2018, : 6 - 12
  • [33] Language Model Prior for Low-Resource Neural Machine Translation
    Baziotis, Christos
    Haddow, Barry
    Birch, Alexandra
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 7622 - 7634
  • [34] Automatic Machine Translation of Poetry and a Low-Resource Language Pair
    Dunder, I
    Seljan, S.
    Pavlovski, M.
    2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY (MIPRO 2020), 2020, : 1034 - 1039
  • [35] Low-Resource Machine Translation with Different Granularity Image Features
    Tayir, Turghun
    Li, Lin
    Maimaiti, Mieradilijiang
    Muhtar, Yusnur
    PATTERN RECOGNITION AND COMPUTER VISION, PT V, PRCV 2024, 2025, 15035 : 260 - 273
  • [36] Low-Resource Neural Machine Translation: A Systematic Literature Review
    Yazar, Bilge Kagan
    Sahin, Durmus Ozkan
    Kilic, Erdal
    IEEE ACCESS, 2023, 11 : 131775 - 131813
  • [37] Meta-Learning for Low-Resource Neural Machine Translation
    Gu, Jiatao
    Wang, Yong
    Chen, Yun
    Cho, Kyunghyun
    Li, Victor O. K.
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 3622 - 3631
  • [38] AAVE Corpus Generation and Low-Resource Dialect Machine Translation
    Graves, Eric
    Aswar, Shreyas
    Desai, Rujuta
    Nampelli, Srilekha
    Chakraborty, Sunandan
    Hall, Ted
    PROCEEDINGS OF THE ACM SIGCAS/SIGCHI CONFERENCE ON COMPUTING AND SUSTAINABLE SOCIETIES 2024, COMPASS 2024, 2024, : 50 - 59
  • [39] Boosting the Transformer with the BERT Supervision in Low-Resource Machine Translation
    Yan, Rong
    Li, Jiang
    Su, Xiangdong
    Wang, Xiaoming
    Gao, Guanglai
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [40] Neural Machine Translation of Low-Resource and Similar Languages with Backtranslation
    Przystupa, Michael
    Abdul-Mageed, Muhammad
    FOURTH CONFERENCE ON MACHINE TRANSLATION (WMT 2019), VOL 3: SHARED TASK PAPERS, DAY 2, 2019, : 224 - 235