Uniqueness of selfdual periodic Chern-Simons vortices of topological-type

被引:34
|
作者
Tarantello, Gabriella [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
D O I
10.1007/s00526-006-0062-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In analogy with the abelian Maxwell-Higgs model (cf. Jaffe and Taubes in Vortices and monopoles, 1980) we prove that periodic topological-type selfdual vortex-solutions for the Chern-Simons model of Jackiw-Weinberg [Phys Rev Lett 64:2334-2337, 1990] and Hong et al. Phys Rev Lett 64:2230-2233, 1990 are uniquely determined by the location of their vortex points, when the Chern-Simons coupling parameter is sufficiently small. This result follows by a uniqueness and uniform invertibility property established for a related elliptic problem (see Theorem 3.6 and 3.7).
引用
收藏
页码:191 / 217
页数:27
相关论文
共 50 条
  • [21] Topological Chern-Simons vortices in the O(3) sigma-model
    Gladikowski, J
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1996, 73 (01): : 181 - 187
  • [22] MAGNUS FORCE AND CHERN-SIMONS VORTICES
    LIU, Q
    STERN, A
    PHYSICAL REVIEW D, 1995, 52 (02): : 1300 - 1301
  • [23] INTERACTION ENERGY OF CHERN-SIMONS VORTICES
    ARTHUR, K
    PHYSICS LETTERS B, 1995, 356 (04) : 509 - 515
  • [24] CHERN-SIMONS VORTICES IN AN OPEN SYSTEM
    BURGESS, M
    PHYSICAL REVIEW D, 1995, 52 (02): : 1165 - 1168
  • [25] Chern-Simons vortices in the Gudnason model
    Han, Xiaosen
    Lin, Chang-Shou
    Tarantello, Gabriella
    Yang, Yisong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (03) : 678 - 726
  • [26] Chern-Simons vortices in an open system
    Burgess, M.
    Physical Review D Particles, Fields, Gravitation and Cosmology, 52 (02):
  • [27] Nonrelativistic Chern-Simons vortices on the torus
    Akerblom, N.
    Cornelissen, G.
    Stavenga, G.
    van Holten, J. W.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (07)
  • [28] MORE ON SCATTERING OF CHERN-SIMONS VORTICES
    DZIARMAGA, J
    PHYSICAL REVIEW D, 1995, 51 (12): : 7052 - 7059
  • [29] Diamagnetic vortices in Chern-Simons theory
    Anber, Mohamed M.
    Burnier, Yannis
    Sabancilar, Eray
    Shaposhnikov, Mikhail
    PHYSICAL REVIEW D, 2015, 92 (08):
  • [30] Rotational anomaly for the Chern-Simons vortices
    Ma, ZS
    Chen, YX
    Li, K
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1995, 24 (04) : 491 - 494