Uniqueness of selfdual periodic Chern-Simons vortices of topological-type

被引:34
|
作者
Tarantello, Gabriella [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
D O I
10.1007/s00526-006-0062-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In analogy with the abelian Maxwell-Higgs model (cf. Jaffe and Taubes in Vortices and monopoles, 1980) we prove that periodic topological-type selfdual vortex-solutions for the Chern-Simons model of Jackiw-Weinberg [Phys Rev Lett 64:2334-2337, 1990] and Hong et al. Phys Rev Lett 64:2230-2233, 1990 are uniquely determined by the location of their vortex points, when the Chern-Simons coupling parameter is sufficiently small. This result follows by a uniqueness and uniform invertibility property established for a related elliptic problem (see Theorem 3.6 and 3.7).
引用
收藏
页码:191 / 217
页数:27
相关论文
共 50 条