A generalization of Lancret's theorem

被引:43
|
作者
Ciftci, Uenver [1 ]
机构
[1] Namk Kemal Univ, Fen Edebiyat Fak, TR-59100 Tekirdag, Turkey
关键词
General helix; Lancret's theorem; Curves in Lie groups; LIE-GROUPS; N-SPACE; HELICES; HYPERSURFACES; CURVATURE; SURFACES; CURVES;
D O I
10.1016/j.geomphys.2009.07.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
General helices in a three dimensional Lie group with a bi-invariant metric are defined and a generalization of Lancret's theorem is obtained. We conclude that the so-called spherical images of general helices are plane curves, and we obtain the so-called spherical general helices. We also give a relation between the geodesics of the so-called cylinders and general helices. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1597 / 1603
页数:7
相关论文
共 50 条
  • [21] On a Generalization of Voronin's Theorem
    Laurincikas, A.
    MATHEMATICAL NOTES, 2020, 107 (3-4) : 442 - 451
  • [22] On a generalization of Fueter's theorem
    Sommen, F
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (04): : 899 - 902
  • [23] Cauchy's theorem and generalization
    Reuss, Paul
    EPJ NUCLEAR SCIENCES & TECHNOLOGIES, 2018, 4
  • [24] A generalization of the Opial's theorem
    Cegielski, Andrzej
    CONTROL AND CYBERNETICS, 2007, 36 (03): : 601 - 610
  • [25] A generalization of Jentzsch’s theorem
    E. A. Lebedeva
    Mathematical Notes, 2010, 88 : 717 - 722
  • [26] A generalization of Obata’s theorem
    Akhil Ranjan
    G. Santhanam
    The Journal of Geometric Analysis, 1997, 7 (3): : 357 - 375
  • [27] On a generalization of Lyapounov's theorem
    vanMill, J
    Ran, A
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1996, 7 (02): : 227 - 242
  • [28] GENERALIZATION OF A THEOREM OF KULLBACK,S
    RECOULES, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (12): : 691 - 694
  • [29] A Generalization of Schatunowsky's Theorem
    Kaneko, Yuto
    Nakai, Hirofumi
    AMERICAN MATHEMATICAL MONTHLY, 2025,
  • [30] On a generalization of Polya's theorem
    Rochev, I. P.
    MATHEMATICAL NOTES, 2007, 81 (1-2) : 247 - 259