The Impact of Three Factors on the Recovery of Item Parameters for the Three-Parameter Logistic Model

被引:1
|
作者
Kim, Kyung Yong [1 ]
Lee, Won-Chan [1 ]
机构
[1] Univ Iowa, Coll Educ, 210 Lindquist Ctr South, Iowa City, IA 52242 USA
关键词
MARGINAL MAXIMUM-LIKELIHOOD;
D O I
10.1080/08957347.2017.1316274
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
This article provides a detailed description of three factors (specification of the ability distribution, numerical integration, and frame of reference for the item parameter estimates) that might affect the item parameter estimation of the three-parameter logistic model, and compares five item calibration methods, which are combinations of the three factors, using a simulation study. The five item calibration methods are Normal-Midpoint-Prior (NMPr), Normal-Hermite-Prior (NHPr), Normal-Midpoint-Posterior (NMPo), Normal-Hermite-Posterior (NHPo), and Empirical-Midpoint-Prior (EMPr). In addition, four item response theory computer programs (BILOG-MG, PARSCALE, flexMIRT, and ICL) are compared in terms of their default specifications and available options of the three factors. The EMPr method recovered item parameters accurately regardless of the shape of the population ability distribution and the number of quadrature points. The NMPr, NHPr, NMPo, and NHPo methods returned item parameter estimates with low bias when abilities followed a standard normal distribution, but tended to either underestimate or overestimate the item parameters when the population ability distribution was skewed. Also, unlike the EMPr method, the performance of these four methods depended on the number of quadrature points.
引用
收藏
页码:228 / 242
页数:15
相关论文
共 50 条
  • [31] Three-parameter clustering of modems
    Muhlis, N
    Peterson, EY
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 1998, 32 (03) : 53 - 58
  • [32] Constructing phylogenetic tree based on three-parameter model
    Guo, Ping
    Chen, Guifang
    Wang, Yanxia
    ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 2193 - +
  • [33] A THREE-PARAMETER LIFETIME DISTRIBUTION
    Pappas, Vasileios
    Adamidis, Konstantinos
    Loukas, Sotirios
    ADVANCES AND APPLICATIONS IN STATISTICS, 2011, 20 (02) : 159 - 167
  • [34] Small area estimation using multiple imputation in three-parameter logistic models
    TELLEZ-PINerez, Cristian
    Trujillo, Leonardo
    Sosa, Juan
    Gutierrez-rojas, Andres
    CHILEAN JOURNAL OF STATISTICS, 2024, 15 (01): : 1 - 26
  • [35] THREE-PARAMETER PROBABILITY DISTRIBUTIONS
    Rao, Donthamsetti Veerabhadra
    1981, 107 (03): : 339 - 358
  • [36] Three-Parameter Logarithm and Entropy
    Corcino, Cristina B.
    Corcino, Roberto B.
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [37] Wiener filter for zoom parameter estimation in three-parameter motion model
    Liu, PC
    Shen, WZ
    Chang, WT
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '97, PTS 1-2, 1997, 3024 : 590 - 599
  • [38] Assessing the Viscoelasticity of Photopolymer Nanowires Using a Three-Parameter Solid Model for Bending Recovery Motion
    Kubackova, Jana
    Slaby, Cyril
    Horvath, Denis
    Hovan, Andrej
    Ivanyi, Gergely T.
    Vizsnyiczai, Gaszton
    Kelemen, Lorand
    Zoldak, Gabriel
    Tomori, Zoltan
    Bano, Gregor
    NANOMATERIALS, 2021, 11 (11)
  • [39] Parameter Estimation in a Three-Parameter Lognormal Distribution
    Kozlov V.D.
    Maysuradze A.I.
    Computational Mathematics and Modeling, 2019, 30 (3) : 302 - 310
  • [40] A three-parameter logistic model to characterize ovarian tissue using polarization-sensitive optical coherence tomography
    Wang, Tianheng
    Yang, Yi
    Zhu, Quing
    BIOMEDICAL OPTICS EXPRESS, 2013, 4 (05): : 772 - 777