An Experimental Review on Deep Learning Architectures for Time Series Forecasting

被引:295
|
作者
Lara-Benitez, Pedro [1 ]
Carranza-Garcia, Manuel [1 ]
Riquelme, Jose C. [1 ]
机构
[1] Univ Seville, Div Comp Sci, ES-41012 Seville, Spain
关键词
Deep learning; forecasting; time series; review; NEURAL DYNAMIC CLASSIFICATION; CRACK DETECTION; NETWORKS; PREDICTION; MODEL; ENERGY; LSTM; DEMAND;
D O I
10.1142/S0129065721300011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, deep learning techniques have outperformed traditional models in many machine learning tasks. Deep neural networks have successfully been applied to address time series forecasting problems, which is a very important topic in data mining. They have proved to be an effective solution given their capacity to automatically learn the temporal dependencies present in time series. However, selecting the most convenient type of deep neural network and its parametrization is a complex task that requires considerable expertise. Therefore, there is a need for deeper studies on the suitability of all existing architectures for different forecasting tasks. In this work, we face two main challenges: a comprehensive review of the latest works using deep learning for time series forecasting and an experimental study comparing the performance of the most popular architectures. The comparison involves a thorough analysis of seven types of deep learning models in terms of accuracy and efficiency. We evaluate the rankings and distribution of results obtained with the proposed models under many different architecture configurations and training hyperparameters. The datasets used comprise more than 50,000 time series divided into 12 different forecasting problems. By training more than 38,000 models on these data, we provide the most extensive deep learning study for time series forecasting. Among all studied models, the results show that long short-term memory (LSTM) and convolutional networks (CNN) are the best alternatives, with LSTMs obtaining the most accurate forecasts. CNNs achieve comparable performance with less variability of results under different parameter configurations, while also being more efficient.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Forecasting air quality time series using deep learning
    Freeman, Brian S.
    Taylor, Graham
    Gharabaghi, Bahram
    The, Jesse
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2018, 68 (08) : 866 - 886
  • [32] Forecasting Sunspot Time Series Using Deep Learning Methods
    Pala, Zeydin
    Atici, Ramazan
    SOLAR PHYSICS, 2019, 294 (05)
  • [33] Time series forecasting and anomaly detection using deep learning
    Iqbal, Amjad
    Amin, Rashid
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 182
  • [34] Deep learning models for forecasting aviation demand time series
    Kanavos, Andreas
    Kounelis, Fotios
    Iliadis, Lazaros
    Makris, Christos
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (23): : 16329 - 16343
  • [35] Phishcasting: Deep Learning for Time Series Forecasting of Phishing Attacks
    Mahmood, Syed Hasan Amin
    Abbasi, Syed Mustafa Ali
    Abbasi, Ahmed
    Zaffar, Fareed
    2020 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS (ISI), 2020, : 224 - 229
  • [36] Financial time series forecasting with deep learning : A systematic literature review: 2005-2019
    Sezer, Omer Berat
    Gudelek, Mehmet Ugur
    Ozbayoglu, Ahmet Murat
    APPLIED SOFT COMPUTING, 2020, 90
  • [37] A systematic literature review of deep learning neural network for time series air quality forecasting
    Zaini, Nur'atiah
    Ean, Lee Woen
    Ahmed, Ali Najah
    Malek, Marlinda Abdul
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (04) : 4958 - 4990
  • [38] A systematic literature review of deep learning neural network for time series air quality forecasting
    Nur’atiah Zaini
    Lee Woen Ean
    Ali Najah Ahmed
    Marlinda Abdul Malek
    Environmental Science and Pollution Research, 2022, 29 : 4958 - 4990
  • [39] A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power
    Rajagukguk, Rial A.
    Ramadhan, Raden A. A.
    Lee, Hyun-Jin
    ENERGIES, 2020, 13 (24)
  • [40] Deep learning for time series classification: a review
    Hassan Ismail Fawaz
    Germain Forestier
    Jonathan Weber
    Lhassane Idoumghar
    Pierre-Alain Muller
    Data Mining and Knowledge Discovery, 2019, 33 : 917 - 963