An Experimental Review on Deep Learning Architectures for Time Series Forecasting

被引:295
|
作者
Lara-Benitez, Pedro [1 ]
Carranza-Garcia, Manuel [1 ]
Riquelme, Jose C. [1 ]
机构
[1] Univ Seville, Div Comp Sci, ES-41012 Seville, Spain
关键词
Deep learning; forecasting; time series; review; NEURAL DYNAMIC CLASSIFICATION; CRACK DETECTION; NETWORKS; PREDICTION; MODEL; ENERGY; LSTM; DEMAND;
D O I
10.1142/S0129065721300011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, deep learning techniques have outperformed traditional models in many machine learning tasks. Deep neural networks have successfully been applied to address time series forecasting problems, which is a very important topic in data mining. They have proved to be an effective solution given their capacity to automatically learn the temporal dependencies present in time series. However, selecting the most convenient type of deep neural network and its parametrization is a complex task that requires considerable expertise. Therefore, there is a need for deeper studies on the suitability of all existing architectures for different forecasting tasks. In this work, we face two main challenges: a comprehensive review of the latest works using deep learning for time series forecasting and an experimental study comparing the performance of the most popular architectures. The comparison involves a thorough analysis of seven types of deep learning models in terms of accuracy and efficiency. We evaluate the rankings and distribution of results obtained with the proposed models under many different architecture configurations and training hyperparameters. The datasets used comprise more than 50,000 time series divided into 12 different forecasting problems. By training more than 38,000 models on these data, we provide the most extensive deep learning study for time series forecasting. Among all studied models, the results show that long short-term memory (LSTM) and convolutional networks (CNN) are the best alternatives, with LSTMs obtaining the most accurate forecasts. CNNs achieve comparable performance with less variability of results under different parameter configurations, while also being more efficient.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Deep Learning Models for Time Series Forecasting: A Review
    Li, Wenxiang
    Law, K. L. Eddie
    IEEE ACCESS, 2024, 12 : 92306 - 92327
  • [2] Review on deep learning models for time series forecasting in industry
    Li X.-R.
    Ban X.-J.
    Yuan Z.-L.
    Qiao H.-R.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (04): : 757 - 766
  • [3] Deep Learning for Time Series Forecasting: Review and Applications in Geotechnics and Geosciences
    Mojtahedi, F. Fazel
    Yousefpour, N.
    Chow, S. H.
    Cassidy, M.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2025,
  • [4] Application of Deep Learning Architectures for Satellite Image Time Series Prediction: A Review
    Moskolai, Waytehad Rose
    Abdou, Wahabou
    Dipanda, Albert
    Kolyang
    REMOTE SENSING, 2021, 13 (23)
  • [5] Deep Learning for Time Series Forecasting: A Survey
    Torres, Jose F.
    Hadjout, Dalil
    Sebaa, Abderrazak
    Martinez-Alvarez, Francisco
    Troncoso, Alicia
    BIG DATA, 2021, 9 (01) : 3 - 21
  • [6] Deep learning for time series forecasting: a survey
    Kong, Xiangjie
    Chen, Zhenghao
    Liu, Weiyao
    Ning, Kaili
    Zhang, Lechao
    Muhammad Marier, Syauqie
    Liu, Yichen
    Chen, Yuhao
    Xia, Feng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025,
  • [7] Time Series Representation Learning: A Survey on Deep Learning Techniques for Time Series Forecasting
    Schmieg, Tobias
    Lanquillon, Carsten
    ARTIFICIAL INTELLIGENCE IN HCI, PT I, AI-HCI 2024, 2024, 14734 : 422 - 435
  • [8] Design of an Iterative Method for Time Series Forecasting Using Temporal Attention and Hybrid Deep Learning Architectures
    Boddu, Yuvaraja
    Manimaran, A.
    IEEE ACCESS, 2025, 13 : 25683 - 25703
  • [9] Time Series Dataset Survey for Forecasting with Deep Learning
    Hahn, Yannik
    Langer, Tristan
    Meyes, Richard
    Meisen, Tobias
    FORECASTING, 2023, 5 (01): : 315 - 335
  • [10] A novel time series forecasting model with deep learning
    Shen, Zhipeng
    Zhang, Yuanming
    Lu, Jiawei
    Xu, Jun
    Xiao, Gang
    NEUROCOMPUTING, 2020, 396 : 302 - 313