Milling surface roughness prediction using evolutionary programming methods

被引:86
|
作者
Colak, Oguz [1 ]
Kurbanoglu, Cahit
Kayacan, M. Cengiz
机构
[1] Univ Suleyman Demirel, CAD CAM, Res & Applicat Ctr, TR-32300 Isparta, Turkey
[2] Univ Suleyman Demirel, Dept Engn Mech, TR-32300 Isparta, Turkey
来源
MATERIALS & DESIGN | 2007年 / 28卷 / 02期
关键词
surface roughness; CNC end milling; genetic expression programming;
D O I
10.1016/j.matdes.2005.07.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
CNC milling has become one of the most competent, productive and flexible manufacturing methods, for complicated or sculptured surfaces. In order to design, optimize, built up to sophisticated, multi-axis milling centers, their expected manufacturing output is at least beneficial. Therefore data, such as the surface roughness, cutting parameters and dynamic cutting behavior are very helpful.. especially when they are computationally produced, by artificial intelligent techniques. Predicting of surface roughness is very difficult using mathematical equations. In this study gene expression programming method is used for predicting surface roughness of milling surface with related to cutting parameters. Cutting speed, feed and depth of cut of end milling operations are collected for predicting surface roughness. End of the study a linear equation is predicted for surface roughness related to experimental study. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:657 / 666
页数:10
相关论文
共 50 条
  • [41] Prediction of surface roughness in duplex stainless steel face milling using artificial neural network
    Vasconcelos, Guilherme Augusto Vilas Boas
    Francisco, Matheus Brendon
    da Costa, Lucas Ribeiro Alves
    Ribeiro Junior, Ronny Francis
    Melo, Mirian de Lourdes Noronha Motta
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 133 (5-6): : 2031 - 2048
  • [42] Prediction of surface roughness in duplex stainless steel top milling using machine learning techniques
    Vasconcelos, Guilherme Augusto Vilas Boas
    Francisco, Matheus Brendon
    de Oliveira, Carlos Henrique
    Barbedo, Elioenai Levi
    de Souza, Luiz Gustavo Paes
    de Lourdes Noronha Motta Melo, Mirian
    International Journal of Advanced Manufacturing Technology, 1600, 134 (5-6): : 2939 - 2953
  • [43] Prediction of surface roughness using machine learning approach for abrasive waterjet milling of alumina ceramic
    Ramesh, Prabhu
    Mani, Kanthababu
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 119 (1-2): : 503 - 516
  • [44] Prediction of surface roughness in duplex stainless steel top milling using machine learning techniques
    Vasconcelos, Guilherme Augusto Vilas Boas
    Francisco, Matheus Brendon
    de Oliveira, Carlos Henrique
    Barbedo, Elioenai Levi
    de Souza, Luiz Gustavo Paes
    Melo, Mirian de Lourdes Noronha Motta
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 134 (5-6): : 2939 - 2953
  • [45] Evolutionary methods claim more accuracy: A comparison of empirical methods and evolutionary programming in vibration prediction
    Sadeghee, A.
    Khoshrou, H.
    Azimi, Y.
    VIBRATIONS FROM BLASTING, 2010, : 39 - 45
  • [46] Milling surface roughness prediction method based on spatiotemporal ensemble learning
    Shi Zeng
    Dechang Pi
    Tao Xu
    The International Journal of Advanced Manufacturing Technology, 2023, 128 : 91 - 119
  • [47] Roughness prediction method of milling surface based on IDRSN-BiLSTM
    Chen, Jialin
    Shang, Zhiwu
    Zhang, Lei
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2024, 45 (04): : 27 - 36
  • [48] Neural network prediction of surface roughness in milling of AISI 1040 steel
    Topal, E. S.
    Sinanoglu, C.
    Gercekcioglu, E.
    Yildizli, K.
    JOURNAL OF THE BALKAN TRIBOLOGICAL ASSOCIATION, 2007, 13 (01): : 18 - 23
  • [49] The role of stepover ratio in prediction of surface roughness in flat end milling
    Topal, Eyuep Sabri
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2009, 51 (11-12) : 782 - 789
  • [50] Surface roughness and forces prediction of milling Inconel 718 with neural network
    Wiciak-Pikula, Martyna
    Felusiak, Agata
    Chwalczuk, Tadeusz
    Twardowski, Pawel
    2020 IEEE 7TH INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE), 2020, : 260 - 264