Codeless Deep Learning of COVID-19 Chest X-Ray Image Dataset with KNIME Analytics Platform

被引:6
|
作者
An, Jun Young [1 ]
Seo, Hoseok [2 ]
Kim, Young-Gon [1 ,3 ]
Lee, Kyu Eun [1 ,4 ]
Kim, Sungwan [1 ,3 ,5 ]
Kong, Hyoun-Joong [2 ,3 ]
机构
[1] Seoul Natl Univ, Coll Med, Med Res Ctr, Inst Med & Biol Engn, Seoul, South Korea
[2] Chungnam Natl Univ, Coll Med, Dept Biomed Engn, Daejeon, South Korea
[3] Seoul Natl Univ Hosp, Transdisciplinary Dept Med & Adv Technol, 101 Daehak Ro, Seoul 03080, South Korea
[4] Seoul Natl Univ, Coll Med, Dept Surg, Seoul, South Korea
[5] Seoul Natl Univ, Coll Med, Dept Biomed Engn, Seoul, South Korea
关键词
COVID-19; Mass Chest X-Ray; Diagnosis; Computer Assisted; Deep Learning; KNIME;
D O I
10.4258/hir.2021.27.1.82
中图分类号
R-058 [];
学科分类号
摘要
Objectives: This paper proposes a method for computer-assisted diagnosis of coronavirus disease 2019 (COVID-19) through chest X-ray imaging using a deep learning model without writing a single line of code using the Konstanz Information Miner (KNIME) analytics platform. Methods: We obtained 155 samples of posteroanterior chest X-ray images from COVID-19 open dataset repositories to develop a classification model using a simple convolutional neural network (CNN). All of the images contained diagnostic information for COVID-19 and other diseases. The model would classify whether a patient was infected with COVID-19 or not. Eighty percent of the images were used for model training, and the rest were used for testing. The graphic user interface-based programming in the KNIME enabled class label annotation, data preprocessing, CNN model training and testing, performance evaluation, and so on. Results: 1,000 epochs training were performed to test the simple CNN model. The lower and upper bounds of positive predictive value (precision), sensitivity (recall), specificity, and f-measure are 92.3% and 94.4%. Both bounds of the model's accuracies were equal to 93.5% and 96.6% of the area under the receiver operating characteristic curve for the test set. Conclusions: In this study, a researcher who does not have basic knowledge of python programming successfully performed deep learning analysis of chest x-ray image dataset using the KNIME independently. The KNIME will reduce the time spent and lower the threshold for deep learning research applied to healthcare.
引用
收藏
页码:82 / 91
页数:10
相关论文
共 50 条
  • [41] COVID-19 recognition from chest X-ray images by combining deep learning with transfer learning
    Zhang, Chang-Jiang
    Ruan, Lu-Ting
    Ji, Ling-Feng
    Feng, Li-Li
    Tang, Fu-Qin
    DIGITAL HEALTH, 2025, 11
  • [42] Deep Learning Approaches for Detecting COVID-19 from Chest X-Ray Images: A Survey
    Alghamdi, Hanan S.
    Amoudi, Ghada
    Elhag, Salma
    Saeedi, Kawther
    Nasser, Jomanah
    Alghamdi, Hanan S. (hsaalghamdi@kau.edu.sa), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 20235 - 20254
  • [43] Validating deep learning inference during chest X-ray classification for COVID-19 screening
    Robbie Sadre
    Baskaran Sundaram
    Sharmila Majumdar
    Daniela Ushizima
    Scientific Reports, 11
  • [44] Deep Learning-based Detection of COVID-19 from Chest X-ray Images
    Manokaran, Jenita
    Zabihollahy, Fatemeh
    Hamilton-Wright, Andrew
    Ukwatta, Eranga
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [45] Metaheuristic Optimization Through Deep Learning Classification of COVID-19 in Chest X-Ray Images
    Samee, Nagwan Abdel
    El-Kenawy, El-Sayed M.
    Atteia, Ghada
    Jamjoom, Mona M.
    Ibrahim, Abdelhameed
    Abdelhamid, Abdelaziz A.
    El-Attar, Noha E.
    Gaber, Tarek
    Slowik, Adam
    Shams, Mahmoud Y.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 4193 - 4210
  • [46] Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning
    Minaee, Shervin
    Kafieh, Rahele
    Sonka, Milan
    Yazdani, Shakib
    Soufi, Ghazaleh Jamalipour
    MEDICAL IMAGE ANALYSIS, 2020, 65
  • [47] Classification of Chest X-ray Images to Diagnose Covid-19 using Deep Learning Techniques
    Santos Silva, Isabel Heloise
    Barros Negreiros, Ramoni Reus
    Firmino Alves, Andre Luiz
    Gomes Valadares, Dalton Cezane
    Perkusich, Angelo
    WINSYS : PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE SYSTEMS, 2022, : 93 - 100
  • [48] A Deep Learning Approach to Detect COVID-19 Patients from Chest X-ray Images
    Haque, Khandaker Foysal
    Abdelgawad, Ahmed
    AI, 2020, 1 (03)
  • [49] Deep Learning Techniques to Identify and Classify COVID-19 Abnormalities on Chest X-ray Images
    Elhanashi, Abdussalam
    Lowe, Duncan
    Saponara, Sergio
    Moshfeghi, Yashar
    REAL-TIME IMAGE PROCESSING AND DEEP LEARNING 2022, 2022, 12102
  • [50] Prediction of Covid-19 Based on Chest X-Ray Images Using Deep Learning with CNN
    Meem, Anika Tahsin
    Khan, Mohammad Monirujjaman
    Masud, Mehedi
    Aljahdali, Sultan
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 41 (03): : 1223 - 1240