Adaptive subwavelength control of nano-optical fields

被引:444
|
作者
Aeschlimann, Martin
Bauer, Michael
Bayer, Daniela
Brixner, Tobias [1 ]
Garcia de Abajo, F. Javier
Pfeiffer, Walter
Rohmer, Martin
Spindler, Christian
Steeb, Felix
机构
[1] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany
[2] Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany
[3] Univ Kiel, Inst Expt & Angew Phys, D-24118 Kiel, Germany
[4] Univ Bielefeld, Fak Phys, D-33516 Bielefeld, Germany
[5] CSIC, Inst Opt, E-28006 Madrid, Spain
关键词
D O I
10.1038/nature05595
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Adaptive shaping of the phase and amplitude of femtosecond laser pulses has been developed into an efficient tool for the directed manipulation of interference phenomena, thus providing coherent control over various quantum-mechanical systems(1-10). Temporal resolution in the femtosecond or even attosecond range has been demonstrated, but spatial resolution is limited by diffraction to approximately half the wavelength of the light field (that is, several hundred nanometres). Theory has indicated(11,12) that the spatial limitation to coherent control can be overcome with the illumination of nanostructures: the spatial near-field distribution was shown to depend on the linear chirp of an irradiating laser pulse. An extension of this idea to adaptive control, combining multiparameter pulse shaping with a learning algorithm, demonstrated the generation of user-specified optical near-field distributions in an optimal and flexible fashion(13). Shaping of the polarization of the laser pulse 14,15 provides a particularly efficient and versatile nano-optical manipulation method(16,17). Here we demonstrate the feasibility of this concept experimentally, by tailoring the optical near field in the vicinity of silver nanostructures through adaptive polarization shaping of femtosecond laser pulses 14,15 and then probing the lateral field distribution by two-photon photoemission electron microscopy(18). In this combination of adaptive control(1-10) and nano-optics(19), we achieve subwave-length dynamic localization of electromagnetic intensity on the nanometre scale and thus overcome the spatial restrictions of conventional optics. This experimental realization of theoretical suggestions(11-13,16,17,20) opens a number of perspectives in coherent control, nano-optics, nonlinear spectroscopy, and other research fields in which optical investigations are carried out with spatial or temporal resolution.
引用
收藏
页码:301 / 304
页数:4
相关论文
共 50 条
  • [31] Electrically Tunable Steganographic Nano-Optical Coatings
    Prabhathan, Patinharekandy
    Sreekanth, Kandammathe Valiyaveedu
    Teng, Jinghua
    Singh, Ranjan
    NANO LETTERS, 2023, 23 (11) : 5236 - 5241
  • [32] Optical coating on nano-optical antennas to enhance directional radiation
    Jen, Yi-Jun
    Lin, Meng-Jie
    Jheng, Ci-Yao
    Liu, Wei-Chih
    JOURNAL OF NANOPHOTONICS, 2015, 9
  • [33] Plasmonic graded nano-disks as nano-optical conveyor belt
    Kang, Zhiwen
    Lu, Haifei
    Chen, Jiajie
    Chen, Kun
    Xu, Fang
    Ho, Ho-Pui
    OPTICS EXPRESS, 2014, 22 (16): : 19567 - 19572
  • [34] Surface plasmons for micro- and nano-optical manipulation
    Quidant, R.
    Righini, M.
    2009 IEEE/LEOS WINTER TOPICALS MEETING SERIES (WTM 2009), 2009, : 42 - +
  • [35] Transmission Control Property of a Nano-optical System Made by an Antenna over a Bowtie Aperture
    Wang, Qiao
    Wang, Xiaogang
    Li, Xufeng
    Wu, Shifa
    PLASMONICS, 2013, 8 (02) : 1141 - 1146
  • [36] Nano-Optical Control of Hot-Spot Field Superenhancement on a Corrugated Silver Surface
    Aeschlimann, Martin
    Brixner, Tobias
    Cunovic, Stefan
    Fischer, Alexander
    Melchior, Pascal
    Pfeiffer, Walter
    Rohmer, Martin
    Schneider, Christian
    Strueber, Christian
    Tuchscherer, Philip
    Voronine, Dmitri V.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2012, 18 (01) : 275 - 282
  • [37] Transmission Control Property of a Nano-optical System Made by an Antenna over a Bowtie Aperture
    Qiao Wang
    Xiaogang Wang
    Xufeng Li
    Shifa Wu
    Plasmonics, 2013, 8 : 1141 - 1146
  • [38] Innovative nano-optical devices, integration and nano-fabrication technologies
    Wang, JJ
    Deng, XG
    Chen, L
    Sciortino, P
    Deng, JD
    Liu, F
    Nikolov, A
    Graham, A
    Huang, YL
    PASSIVE COMPONENTS AND FIBER-BASED DEVICES, PTS 1 AND 2, 2005, 5623 : 259 - 273
  • [39] Roadmap on biosensing and photonics with advanced nano-optical methods
    Di Fabrizio, Enzo
    Schluecker, Sebastian
    Wenger, Jerome
    Regmi, Raju
    Rigneault, Herve
    Calafiore, Giuseppe
    West, Melanie
    Cabrini, Stefano
    Fleischer, Monika
    van Hulst, Niek F.
    Garcia-Parajo, Maria F.
    Pucci, Annemarie
    Cojoc, Dan
    Hauser, Charlotte A. E.
    Ni, Ming
    JOURNAL OF OPTICS, 2016, 18 (06)
  • [40] Metasurface Micro/Nano-Optical Sensors: Principles and Applications
    Qin, Jin
    Jiang, Shibin
    Wang, Zhanshan
    Cheng, Xinbin
    Li, Baojun
    Shi, Yuzhi
    Tsai, Din Ping
    Liu, Ai Qun
    Huang, Wei
    Zhu, Weiming
    ACS NANO, 2022, 16 (08) : 11598 - 11618