Portfolio management using multivariate time series forecasts

被引:0
|
作者
Pojarliev, M [1 ]
Polasek, W [1 ]
机构
[1] Univ Basel, Inst Stat & Econometr, CH-4051 Basel, Switzerland
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We use a multivariate VAR-GARCH model to predict the monthly returns and the variance matrix of the MSCI North America, MSCI Europe and MSCI Pacific indices from February 1990 until September 1999. We are interested in the following questions: First, can time series forecasts be successfully transformed into portfolio weights, and second, what kind of forecasts improves the portfolio performance? We compare two minimum-variance portfolios: the first portfolio is based only on the forecasted variance matrix, while the second portfolio uses the predicted returns and the predicted variance matrix. As a benchmark we choose the MSCI World index.
引用
收藏
页码:514 / 521
页数:8
相关论文
共 50 条
  • [41] Streamflow generation using a multivariate hybrid time series model
    Rieu, Seung Yup
    Kim, Young-Oh
    Lee, Dong Ryul
    IAHS-AISH Publication, 2003, (280):
  • [42] Inhomogeneity detection in phytoplankton time series using multivariate analyses
    Muniz, Oihane
    German Rodriguez, Jose
    Revilla, Marta
    Laza-Martinez, Aitor
    Seoane, Sergio
    Franco, Javier
    OCEANOLOGIA, 2020, 62 (03) : 243 - 254
  • [43] Outliers detection in multivariate time series using genetic algorithms
    Cucina, Domenico
    di Salvatore, Antonietta
    Protopapas, Mattheos K.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 132 : 103 - 110
  • [44] Structural damage detection using multivariate time series analysis
    Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA 18015, United States
    Conf. Proc. Soc. Exp. Mech. Ser., (299-308):
  • [45] Streamflow generation using a multivariate hybrid time series model
    Rieu, SY
    Kim, YO
    Lee, DR
    WATER RESOURCES SYSTEMS - WATER AVAILABILITY AND GLOBAL CHANGE, 2003, (280): : 255 - 259
  • [46] Multivariate Time Series Synthesis Using Generative Adversarial Networks
    Leznik, Mark
    Michalsky, Patrick
    Willis, Peter
    Schanzel, Benjamin
    Ostberg, Per-Olov
    Domaschka, Joerg
    PROCEEDINGS OF THE ACM/SPEC INTERNATIONAL CONFERENCE ON PERFORMANCE ENGINEERING (ICPE '21), 2021, : 43 - 50
  • [47] Temporal disaggregation using multivariate structural time series models
    Moauro, F
    Savio, G
    ECONOMETRICS JOURNAL, 2005, 8 (02): : 214 - 234
  • [48] A short tutorial for multivariate time series explanation using tsCaptum
    Serramazza, Davide Italo
    Le Nguyen, Thach
    Ifrim, Georgiana
    SOFTWARE IMPACTS, 2024, 22
  • [49] Anomaly Attribution of Multivariate Time Series using Counterfactual Reasoning
    Trifunov, Violeta Teodora
    Shadaydeh, Maha
    Barz, Bjoern
    Denzler, Joachim
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 166 - 172
  • [50] Multivariate time series forecasting using independent component analysis
    Popescu, TD
    ETFA 2003: IEEE CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, VOL 2, PROCEEDINGS, 2003, : 782 - 789