Linear-representation based estimation of stochastic volatility models

被引:10
|
作者
Francq, Christian
Zakoian, Jean-Michel
机构
[1] CREST, F-92245 Malakoff, France
[2] Univ Lille 3, GREMARS, F-59653 Villeneuve Dascq, France
关键词
autoregressive moving average; conditional heteroskedasticity; consistency and asymptotic normality; non-linear least squares; stochastic volatility;
D O I
10.1111/j.1467-9469.2006.00495.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new way of estimating stochastic volatility models is developed. The method is based on the existence of autoregressive moving average (ARMA) representations for powers of the log-squared observations. These representations allow to build a criterion obtained by weighting the sums of squared innovations corresponding to the different ARMA models. The estimator obtained by minimizing the criterion with respect to the parameters of interest is shown to be consistent and asymptotically normal. Monte-Carlo experiments illustrate the finite sample properties of the estimator. The method has potential applications to other non-linear time-series models.
引用
收藏
页码:785 / 806
页数:22
相关论文
共 50 条
  • [21] Estimation and forecasting of long memory stochastic volatility models
    Abbara, Omar
    Zevallos, Mauricio
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2023, 27 (01): : 1 - 24
  • [22] Data cloning estimation for asymmetric stochastic volatility models
    Bermudez, P. De Zea
    Marin, J. Miguel
    Veiga, Helena
    ECONOMETRIC REVIEWS, 2020, 39 (10) : 1057 - 1074
  • [23] Recursive estimation for continuous time stochastic volatility models
    Gong, H.
    Thavaneswaran, A.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (11) : 1770 - 1774
  • [24] On periodic autoregressive stochastic volatility models: structure and estimation
    Boussaha, Nadia
    Hamdi, Faycal
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (09) : 1637 - 1668
  • [25] Parameter estimation for discretely observed stochastic volatility models
    Genon-Catalot, V
    Jeantheau, T
    Laredo, C
    BERNOULLI, 1999, 5 (05) : 855 - 872
  • [26] Efficient estimation of drift parameters in stochastic volatility models
    Gloter, Arnaud
    FINANCE AND STOCHASTICS, 2007, 11 (04) : 495 - 519
  • [27] Efficient estimation for the volatility of stochastic interest rate models
    Song, Yuping
    Li, Hangyan
    Fang, Yetong
    STATISTICAL PAPERS, 2021, 62 (04) : 1939 - 1964
  • [28] Estimation of stochastic volatility models for the purpose of option pricing
    Chernov, M
    Ghysels, E
    COMPUTATIONAL FINANCE 1999, 2000, : 567 - 581
  • [29] Recursive estimation for continuous time stochastic volatility models
    Department of Statistics, Temple University, Philadelphia, PA 19122, United States
    不详
    Appl Math Lett, 11 (1770-1774):