Missing data incremental imputation through tree based methods

被引:0
|
作者
Conversano, C [1 ]
Cappelli, C [1 ]
机构
[1] Univ Naples Federico II, Dept Math & Stat, Naples, Italy
关键词
missing data; data mining; lexicographic order; nonparametric; imputation; tree-based models;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Conditional mean imputation is a common way to deal with missing data. Although very simple to implement, the method might suffer from model misspecification and it results unsatisfactory for non linear data. We propose the iterative use of tree based models for missing data imputation in large data bases. The proposed procedure uses lexicographic order to rank missing values that occur in different variables and deals with these incrementally, i.e, augmenting the data by the previously filled in records according to the defined order.
引用
收藏
页码:455 / 460
页数:6
相关论文
共 50 条
  • [21] A comparison of imputation methods for the consecutive missing temperature data
    Kim, Hee-Kyung
    Kang, In-Kyeong
    Lee, Jae-Won
    Lee, Yung-Seop
    KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (03) : 549 - 557
  • [22] Some imputation methods for missing data in sample surveys
    Singh, G. N.
    Maurya, S.
    Khetan, M.
    Kadilar, Cem
    Hacettepe Journal of Mathematics and Statistics, 2016, 45 (06): : 1865 - 1880
  • [23] Ensemble imputation methods for missing software engineering data
    Twala, B
    Cartwright, M
    2005 11TH INTERNATIONAL SYMPOSIUM ON SOFTWARE METRICS (METRICS), 2005, : 268 - 277
  • [24] Imputation methods for missing data in educational diagnostic evaluation
    Fernandez-Alonso, Ruben
    Suarez-Alvarez, Javier
    Muniz, Jose
    PSICOTHEMA, 2012, 24 (01) : 167 - 175
  • [25] Application and Comparison of Imputation Methods for Missing Degradation Data
    Fan, Ye
    Sun, Fuqiang
    Jiang, Tongmin
    ENGINEERING ASSET MANAGEMENT - SYSTEMS, PROFESSIONAL PRACTICES AND CERTIFICATION, 2015, : 1607 - 1614
  • [26] New imputation methods for missing data using quantiles
    Munoz, J. F.
    Rueda, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 232 (02) : 305 - 317
  • [27] Comparison of imputation methods for missing laboratory data in medicine
    Waljee, Akbar K.
    Mukherjee, Ashin
    Singal, Amit G.
    Zhang, Yiwei
    Warren, Jeffrey
    Balis, Ulysses
    Marrero, Jorge
    Zhu, Ji
    Higgins, Peter D. R.
    BMJ OPEN, 2013, 3 (08):
  • [28] Imputation Methods for Multiple Regression with Missing Heteroscedastic Data
    Asif, Muhammad
    Samart, Klairung
    THAILAND STATISTICIAN, 2022, 20 (01): : 1 - 15
  • [29] Missing data imputation methods and their performance with biodistance analyses
    Kenyhercz, Michael W.
    Passalacqua, Nicholas V.
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2015, 156 : 185 - 185
  • [30] Evaluating Imputation Methods for Missing Data in a MCI Dataset
    Gomez-Valades Batanero, Alba
    Rincon Zamorano, Mariano
    Martinez Tomas, Rafael
    Guerrero Martin, Juan
    ARTIFICIAL INTELLIGENCE IN NEUROSCIENCE: AFFECTIVE ANALYSIS AND HEALTH APPLICATIONS, PT I, 2022, 13258 : 446 - 454