FedSA: A staleness-aware asynchronous Federated Learning algorithm with non-IID data

被引:52
|
作者
Chen, Ming [2 ]
Mao, Bingcheng [2 ]
Ma, Tianyi [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China
[2] Hithink RoyalFlush Informat Network Co Ltd, Hangzhou, Zhejiang, Peoples R China
关键词
Federated Learning; Distributed machine learning; Mobile edge computing; Non-IID data;
D O I
10.1016/j.future.2021.02.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents new asynchronous methods to the Federated Learning (FL), one of the next generation paradigms for Artificial Intelligence (AI) systems. We consider the two-fold challenges lay ahead. First, non-IID (non-Independent and Identically Distributed) data across devices cause unstable performance. Second, unreliable and slow environments not only slow the convergence but also cause staleness issues. To address these challenges, this study uses a bottom-up approach for analysis and algorithm design. We first reformulate FL by unifying both synchronous and asynchronous updating schemes with an asynchrony-related parameter. We theoretically analyze this new form and find practical strategies for optimization. The key findings include: 1) a two-stage training strategy to accelerate training and reduce communication overhead; 2) strategies of choosing key hyperparameters optimally for these stages to maintain efficiency and robustness. With these theoretical guarantees, we propose FedSA (Federated Staleness -Aware), a novel asynchronous federated learning algorithm. We validate FedSA on different tasks with non-IID/IID and staleness settings. Our results indicate that, given a large proportion of stale devices, the proposed algorithm presents state-of-the-art performance by outperforming existing methods on both non-IID and IID cases. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] EFL: ELASTIC FEDERATED LEARNING ON NON-IID DATA
    Ma, Zichen
    Lu, Yu
    Li, Wenye
    Cui, Shuguang
    CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 199, 2022, 199
  • [22] Dual Adversarial Federated Learning on Non-IID Data
    Zhang, Tao
    Yang, Shaojing
    Song, Anxiao
    Li, Guangxia
    Dong, Xuewen
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2022, PT III, 2022, 13370 : 233 - 246
  • [23] Decoupled Federated Learning for ASR with Non-IID Data
    Zhu, Han
    Wang, Jindong
    Cheng, Gaofeng
    Zhang, Pengyuan
    Yan, Yonghong
    INTERSPEECH 2022, 2022, : 2628 - 2632
  • [24] FedEL: Federated ensemble learning for non-iid data
    Wu, Xing
    Pei, Jie
    Han, Xian-Hua
    Chen, Yen-Wei
    Yao, Junfeng
    Liu, Yang
    Qian, Quan
    Guo, Yike
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [25] Contractible Regularization for Federated Learning on Non-IID Data
    Chen, Zifan
    Wu, Zhe
    Wu, Xian
    Zhang, Li
    Zhao, Jie
    Yan, Yangtian
    Zheng, Yefeng
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 61 - 70
  • [26] Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Feng, Chenyuan
    Hong, Wei
    Jiang, Jiamo
    Jia, Chao
    Quek, Tony Q. S.
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (03) : 1927 - 1942
  • [27] Dynamic Clustering Federated Learning for Non-IID Data
    Chen, Ming
    Wu, Jinze
    Yin, Yu
    Huang, Zhenya
    Liu, Qi
    Chen, Enhong
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT III, 2022, 13606 : 119 - 131
  • [28] Data augmentation scheme for federated learning with non-IID data
    Tang L.
    Wang D.
    Liu S.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (01): : 164 - 176
  • [29] Optimizing Federated Learning on Non-IID Data with Reinforcement Learning
    Wang, Hao
    Kaplan, Zakhary
    Niu, Di
    Li, Baochun
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2020, : 1698 - 1707
  • [30] Data Distribution-Aware Model Aggregation for non-IID Data in a Federated Learning Framework
    Kushwaha, Deepali
    Mehrotra, Ananya
    Hegde, Rajesh M.
    PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024, 2024,