Almost sure central limit theorem;
logarithmic average;
weighted partial sum;
dependent variables;
D O I:
10.1556/012.2019.56.2.1426
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let {X-n : n >= 1} be a sequence of dependent random variables and let {w(nk) : 1 <= k <= n, n >= 1} be a triangular array of real numbers. We prove the almost sure version of the CLT proved by Peligrad and Utev [7] for weighted partial sums of mixing and associated sequences of random variables, i.e. lim (n ->infinity) 1/log n Sigma(n)(k=1) 1/k I (Sigma(k)(i=1) w(ki)X(i) <= x) = 1/root 2 pi integral(x)(-infinity) e(-1/2t2) dt a.s..
机构:
Nicolaus Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, PolandNicolaus Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
Szewczak, Zbigniew
Weber, Michel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Louis Pasteur, IRMA, UMR 7501, F-67084 Strasbourg, France
CNRS, F-67084 Strasbourg, FranceNicolaus Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
机构:
Nicolaus Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, PolandNicolaus Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
Szewczak, Zbigniew
Weber, Michel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Louis Pasteur, IRMA, UMR 7501, F-67084 Strasbourg, France
CNRS, F-67084 Strasbourg, FranceNicolaus Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland