A Comparative Study of Classifier Ensembles for Karyotyping

被引:0
|
作者
Barandiaran, Inigo [1 ]
Maclair, Gregory [1 ]
Goienetxea, Izaro [2 ]
Jauquicoa, Carlos [1 ]
Grana, Manuel [2 ]
机构
[1] Vicomtech, Guipuzcoa, Spain
[2] Dpto CCIA, UPV EHU, Leioa, Spain
关键词
Karyotyping; classifier ensembles; Pattern Recognition;
D O I
10.3233/978-1-61499-105-2-1400
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The karyotyping step is essential in the genetic diagnosis process, since it allows the genetician to see and interpret patient's chromosomes. Today, this step of karyotyping is a time-cost procedure, especially the part that consists in segmenting and classifying the chromosomes by pairs. This paper presents a compartive study of image classification of banded human chromosomes for automated karyotyping (AKS), by using classifier ensembles. The goal of this contribution is to propose and evaluate a solution to automate the karyotyping, from microscope images to the obtention of the classified chromosomes. For this purpose, we have evaluated several approaches based on classifier ensembles trying to find a solution that shows better trade-off between accuracy and computational cost.
引用
收藏
页码:1400 / 1407
页数:8
相关论文
共 50 条
  • [21] Support of Contextual Classifier Ensembles Design
    Jakubczyc, Janina A.
    Owoc, Mieczyslaw L.
    PROCEEDINGS OF THE 2015 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2015, 5 : 1683 - 1689
  • [22] Classifier ensembles with a random linear oracle
    Kuncheva, Ludmila I.
    Rodriguez, Juan J.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2007, 19 (04) : 500 - 508
  • [23] Cost-conscious classifier ensembles
    Demir, C
    Alpaydin, E
    PATTERN RECOGNITION LETTERS, 2005, 26 (14) : 2206 - 2214
  • [24] Learning aggregation for combining classifier ensembles
    Wanas, NM
    Kamel, MS
    ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 1729 - 1733
  • [25] Rough Ensemble Classifier: A Comparative Study
    Saha, Suman
    Murthy, Chivukula A.
    Pal, Sankar K.
    FUZZY LOGIC AND APPLICATIONS, 2009, 5571 : 116 - 123
  • [26] Tweet sentiment analysis with classifier ensembles
    da Silva, Nadia F. F.
    Hruschka, Eduardo R.
    Hruschka, Estevam R., Jr.
    DECISION SUPPORT SYSTEMS, 2014, 66 : 170 - 179
  • [27] Comparative Study on Efficiency of Classifier Models
    Soundararajan, Arvinda
    Santhi, B.
    RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, 2016, 7 (06): : 1575 - 1581
  • [28] Polyphonic Music Retrieval with Classifier Ensembles
    Rizo, David
    Inesta, Jose M.
    Lemstrom, Kjell
    JOURNAL OF NEW MUSIC RESEARCH, 2011, 40 (04) : 313 - 324
  • [29] Predicting stock returns by classifier ensembles
    Tsai, Chih-Fong
    Lin, Yuah-Chiao
    Yen, David C.
    Chen, Yan-Min
    APPLIED SOFT COMPUTING, 2011, 11 (02) : 2452 - 2459
  • [30] Survey of diversity researches on classifier ensembles
    Zhang, Hong-Da
    Wang, Xiao-Dan
    Han, Jun
    Xu, Hai-Long
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2009, 31 (12): : 3007 - 3012