Robust blind beamforming algorithm using joint multiple matrix diagonalization

被引:12
|
作者
Huang, Xiaozhou [1 ]
Wu, Hsiao-Chun
Principe, Jose C.
机构
[1] Louisiana State Univ, Dept Elect & Comp Engn, Commun & Signal Proc Lab, Baton Rouge, LA 70803 USA
[2] Univ Florida, Dept Elect & Comp Engn, Computat Neuroengn Lab, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
blind beamforming; cumulants; givens rotation; higher order statistics (HOS); joint approximate diagonalization of eigen-matrices (JADE); joint diagonalization; singular value decomposition (SVD);
D O I
10.1109/JSEN.2006.886881
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The objective of the blind beamforming is to restore the unknown source signals simply based on the observations, without a priori knowledge of the source signals and the mixing matrix. In this paper, we propose a new joint multiple matrix diagonalization (JMMD) algorithm for the robust blind beamforming. This new JMMD algorithm is based on the iterative eigen decomposition of the fourth-order cumulant matrices. Therefore, it can avoid the problems of the stability and the misadjustment, which arise from the conventional steepest-descent approaches for the constant-modulus or cumulant optimization. Our Monte Carlo simulations show that our proposed algorithm significantly outperforms the ubiquitous joint approximate diagonalization of eigen-matrices algorithm, relying on the Givens rotations for the phase-shift keying source signals in terms of signal-to-interference-and-noise ratio for a wide variety of signal-to-noise ratios.
引用
收藏
页码:130 / 136
页数:7
相关论文
共 50 条
  • [31] Steering Vector and Covariance Matrix Joint Iterative Estimations for Robust Beamforming
    Yang Zhiwei
    Zhang Pan
    Chen Ying
    Xu Huajian
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (12) : 2874 - 2880
  • [32] Robust multiple suppression using adaptive beamforming
    Hu, T
    White, RE
    GEOPHYSICAL PROSPECTING, 1998, 46 (03) : 227 - 248
  • [33] Robust Beamforming using Multiple Constraints Relaxation
    Feng, Yang
    Liao, Guisheng
    Xu, Jingwei
    Zhu, Shengqi
    Zeng, Cao
    2018 IEEE 10TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2018, : 514 - 518
  • [34] A robust blind sparse source separation algorithm using genetic algorithm to identify mixing matrix
    Sun, Tsung-Ying
    Liu, Chan-Cheng
    Hsieh, Sheng-Ta
    Tsai, Shang-Jeng
    Li, Kan-Yuan
    PROCEEDINGS OF THE FOURTH IASTED INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PATTERN RECOGNITION, AND APPLICATIONS, 2007, : 82 - +
  • [35] Joint diagonalization DOA matrix method
    TieQi Xia
    XueGang Wang
    Yi Zheng
    Qun Wan
    Science in China Series F: Information Sciences, 2008, 51 : 1340 - 1348
  • [36] Joint diagonalization DOA matrix method
    XIA TieQi
    Science in China(Series F:Information Sciences), 2008, (09) : 1340 - 1348
  • [37] On using exact joint diagonalization for noniterative approximate joint diagonalization
    Yeredor, A
    IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (09) : 645 - 648
  • [38] A Simple Nonorthogonal Approximate Joint Diagonalization Algorithm and Its Application for Blind Source Separation
    Li, Changli
    Xu, Lizhong
    Xu, Shufang
    Zhang, Ying
    Tan, Yanchun
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2015, 12 (04) : 549 - 552
  • [39] Blind Signal Separation by Synchronized Joint Diagonalization
    Sawada, Hiroshi
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2018), 2018, 10891 : 217 - 227
  • [40] On the use of joint diagonalization in blind signal processing
    Theis, Fabian J.
    Inouye, Yujiro
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 3586 - 3589