Semi-supervised link prediction based on non-negative matrix factorization for temporal networks *

被引:4
|
作者
Zhang, Ting [1 ]
Zhang, Kun [1 ]
Li, Xun [1 ]
Lv, Laishui [1 ]
Sun, Qi [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
关键词
Temporal link prediction; Semi-supervised learning; Graph regularized non-negative matrix; factorization; Temporal networks;
D O I
10.1016/j.chaos.2021.110769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Temporal link prediction is a critical issue in the field of network analysis, which predicts the future links in temporal networks. In order to facilitate the performance of temporal link prediction approach, we should fuse the topological and temporal properties. Here we propose a novel semi-supervised non negative matrix factorization method for temporal link prediction. Potential useful prior information is obtained from community which naturally expresses topological structure of networks. Moreover, we capture the temporal information of networks by graph communicability. We factorize the communicability matrix respect to the temporal network by setting the historic networks as graph regularization and priors as node pair constraints. Extensive experiments on both synthetic and real-world networks demonstrate that the proposed method can improve the accuracy of temporal link prediction. Especially, our method performs stably when the wrong prior rate is up to 30% . (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Semi-supervised multi-view clustering by label relaxation based non-negative matrix factorization
    Zuyuan Yang
    Huimin Zhang
    Naiyao Liang
    Zhenni Li
    Weijun Sun
    The Visual Computer, 2023, 39 : 1409 - 1422
  • [32] Link prediction by deep non-negative matrix factorization
    Chen, Guangfu
    Wang, Haibo
    Fang, Yili
    Jiang, Ling
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 188
  • [33] Constrained Projective Non-negative Matrix Factorization for Semi-supervised Multi-label Learning
    Zhang, Xiang
    Guan, Naiyang
    Luo, Zhigang
    Yang, Xuejun
    2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, : 588 - 593
  • [34] Semi-Supervised Symmetric Non-Negative Matrix Factorization With Low-Rank Tensor Representation
    Jia, Yuheng
    Li, Jia-Nan
    Wu, Wenhui
    Wang, Ran
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1534 - 1547
  • [35] NMFE-SSCC: Non-negative matrix factorization ensemble for semi-supervised collective classification
    Wu, Qingyao
    Tan, Mingkui
    Li, Xutao
    Min, Huaqing
    Sun, Ning
    KNOWLEDGE-BASED SYSTEMS, 2015, 89 : 160 - 172
  • [36] A semi-supervised non-negative matrix factorization model for scRNA-seq data analysis
    Lan, Junjie
    Zhuo, Xiaoling
    Ye, Siman
    Deng, Jin
    APPLIED SOFT COMPUTING, 2025, 174
  • [37] A New Adaptive Robust Modularized Semi-Supervised Community Detection Method Based on Non-negative Matrix Factorization
    Ghadirian, Mohammad
    Bigdeli, Nooshin
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [38] Semi-supervised multi-view learning by using label propagation based non-negative matrix factorization
    Liang, Naiyao
    Yang, Zuyuan
    Li, Zhenni
    Xie, Shengli
    Sun, Weijun
    KNOWLEDGE-BASED SYSTEMS, 2021, 228
  • [39] A New Adaptive Robust Modularized Semi-Supervised Community Detection Method Based on Non-negative Matrix Factorization
    Mohammad Ghadirian
    Nooshin Bigdeli
    Neural Processing Letters, 56
  • [40] Semi-supervised community detection on attributed networks using non-negative matrix tri-factorization with node popularity
    Jin, Di
    He, Jing
    Chai, Bianfang
    He, Dongxiao
    FRONTIERS OF COMPUTER SCIENCE, 2021, 15 (04)