Classification of sleep apnea by using wavelet transform and artificial neural networks

被引:58
|
作者
Tagluk, M. Emin [2 ]
Akin, Mehmet [1 ]
Sezgin, Nemettin [1 ]
机构
[1] Dicle Univ, Dept Elect & Elect Engn, Diyarbakir, Turkey
[2] Univ Inonu, Dept Elect & Elect Engn, Malatya, Turkey
关键词
Sleep apnea syndrome; Wavelet transform; Artificial neural networks; Abdominal effort signal; ALCOHOL; DIAGNOSIS; AROUSAL; PATTERN; NECK;
D O I
10.1016/j.eswa.2009.06.049
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a new method to classify sleep apnea syndrome (SAS) by using wavelet transforms and an artificial neural network (ANN) The network was trained and tested for different momentum coefficients. The abdominal respiration signals are separated into spectral components by using multi-resolution wavelet transforms. These spectral components are applied to the inputs of the artificial neural network. Then the neural network was configured to give three outputs to classify the SAS situation of the patient. The apnea can be broadly classified into three types. obstructive sleep apnea (OSA), central sleep apnea (CSA) and mixed sleep apnea (MSA). During OSA. the airway is blocked while respiratory efforts continue. During CSA the airway is open. however, there are no respiratory efforts In this paper we aim to classify sleep apnea in one of three basic types: obstructive, central and mixed. (C) 2009 Elsevier Ltd. Ail rights reserved.
引用
收藏
页码:1600 / 1607
页数:8
相关论文
共 50 条
  • [21] ECG Arrhythmia Classification using Discrete Wavelet Transform and Artificial Neural Network
    Dewangan, Naveen Kumar
    Shukla, S. P.
    2016 IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2016, : 1892 - 1896
  • [22] Dysphonic voice classification using wavelet packet transform and artificial neural network
    Schuck, A
    Guimaraes, LV
    Wisbeck, JO
    PROCEEDINGS OF THE 25TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: A NEW BEGINNING FOR HUMAN HEALTH, 2003, 25 : 2958 - 2961
  • [23] EEG Signals Classification and Diagnosis Using Wavelet Transform and Artificial Neural Network
    Chavan, Arun
    Kolte, Mahesh
    2017 INTERNATIONAL CONFERENCE ON NASCENT TECHNOLOGIES IN ENGINEERING (ICNTE-2017), 2017,
  • [24] Classification of Power Quality Disturbances Using Wavelet and Artificial Neural Networks
    Rodriguez, A.
    Ruiz, J. E.
    Aguado, J.
    Lopez, J. J.
    Martin, F. I.
    Munoz, F.
    IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 2010), 2010, : 1589 - 1594
  • [25] Detection of Pathological Voices Using Discrete Wavelet Transform and Artificial Neural Networks
    Shia, S. Emerald
    Jayasree, T.
    2017 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNIQUES IN CONTROL, OPTIMIZATION AND SIGNAL PROCESSING (INCOS), 2017,
  • [26] Evaluation and Classification of Power Quality Disturbances Based on Discrete Wavelet Transform and Artificial Neural Networks
    Alshahrani, Saeed
    Abbod, Maysam
    Alamri, Basem
    Taylor, Gareth
    2015 50TH INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC), 2015,
  • [27] Classification and Localization of Faults in AC Microgrids Through Discrete Wavelet Transform and Artificial Neural Networks
    Jayasinghe, J. A. R. R.
    Malindi, J. H. E.
    Rajapaksha, R. M. A. M.
    Logeeshan, V.
    Wanigasekara, Chathura
    IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY, 2024, 11 : 303 - 313
  • [28] Detection and Classification of Impulse faults in transformer using Wavelet Transform and Artificial Neural Network
    Vanamadevi, N.
    Arivamudhan, M.
    Santhi, S.
    2008 IEEE INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY TECHNOLOGIES (ICSET), VOLS 1 AND 2, 2008, : 72 - 76
  • [29] Faults Classification of a Scooter Engine Platform Using Wavelet Transform and Artificial Neural Network
    Wu, J-D.
    Chang, E-C.
    Liao, S-Y.
    Kuo, J-M.
    Huang, C-K.
    IMECS 2009: INTERNATIONAL MULTI-CONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2009, : 58 - 63
  • [30] Detection and classification of epileptic seizure using continuous wavelet transform and artificial neural network
    Tomaru, Chinatsu
    Iijima, Kazunori
    Owada-Makabe, Kyoko
    Tsubota, Yuji
    NEUROSCIENCE RESEARCH, 2007, 58 : S238 - S238