Effective Multi-label Classification Method for Multidimensional Datasets

被引:6
|
作者
Glinka, Kinga [1 ]
Zakrzewska, Danuta [1 ]
机构
[1] Lodz Univ Technol, Inst Informat Technol, Wolczanska 215, PL-90924 Lodz, Poland
来源
关键词
Multi-label classification; Labels chain; Machine learning; Problem transformation methods;
D O I
10.1007/978-3-319-26154-6_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label classification, contrarily to the traditional single-label one, aims at predicting more than one predefined class label for data instances. Multi-label classification problems very often concern multidimensional datasets where number of attributes significantly exceeds relatively small number of instances. In the paper, new effective problem transformation method which deals with such cases is introduced. The proposed Labels Chain (LC) algorithm is based on relationship between labels, and consecutively uses result labels as new attributes in the following classification process. Experiments conducted on several multidimensional datasets showed the good performance of the presented method, taking into account predictive accuracy and computation time. The obtained results are compared with those obtained by the most popular Binary Relevance (BR) and Label Power-set (LP) algorithms.
引用
收藏
页码:127 / 138
页数:12
相关论文
共 50 条
  • [21] Binary Transformation Method for Multi-Label Stream Classification
    Gulcan, Ege Berkay
    Ecevit, Isin Su
    Can, Fazli
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3968 - 3972
  • [22] A lazy feature selection method for multi-label classification
    Pereira, Rafael B.
    Plastino, Alexandre
    Zadrozny, Bianca
    Merschmann, Luiz H. C.
    INTELLIGENT DATA ANALYSIS, 2021, 25 (01) : 21 - 34
  • [23] WiseTag: An Ensemble Method for Multi-label Topic Classification
    Liang, Guanqing
    Kao, Hsiaohsien
    Leung, Cane Wing-Ki
    He, Chao
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2018, PT II, 2018, 11109 : 479 - 489
  • [24] A Classification Method for Small Sample Multi-label Images
    Li, Ruohan
    Jiang, Zengru
    Dai, Wei
    Nie, Yongkang
    Liu, Liang
    Dai, Yaping
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 1365 - 1370
  • [25] Selecting a Multi-Label Classification Method for an Interactive System
    Nair-Benrekia, Noureddine-Yassine
    Kuntz, Pascale
    Meyer, Frank
    DATA SCIENCE, LEARNING BY LATENT STRUCTURES, AND KNOWLEDGE DISCOVERY, 2015, : 157 - 167
  • [26] Multi-label Text Classification Method Based on Label Semantic Information
    Xiao L.
    Chen B.-L.
    Huang X.
    Liu H.-F.
    Jing L.-P.
    Yu J.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (04): : 1079 - 1089
  • [27] Multi-label classification of feedbacks
    Ruiz Alonso, Dorian
    Zepeda Cortes, Claudia
    Castillo Zacatelco, Hilda
    Carballido Carranza, Jose Luis
    Garcia Cue, Jose Luis
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (05) : 4337 - 4343
  • [28] The advances in multi-label classification
    Chen, Shijun
    Gao, Lin
    2014 INTERNATIONAL CONFERENCE ON MANAGEMENT OF E-COMMERCE AND E-GOVERNMENT (ICMECG), 2014, : 240 - 245
  • [29] Multi-label Dysfluency Classification
    Jouaiti, Melanie
    Dautenhahn, Kerstin
    SPEECH AND COMPUTER, SPECOM 2022, 2022, 13721 : 290 - 301
  • [30] Multi-label Deepfake Classification
    Singh, Inder Pal
    Mejri, Nesryne
    Nguyen, Van Dat
    Ghorbel, Enjie
    Aouada, Djamila
    2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2023,