Scaling and universality in the phase diagram of the 2D Blume-Capel model

被引:36
|
作者
Zierenberg, Johannes [1 ,2 ]
Fytas, Nikolaos G. [2 ,3 ]
Weigel, Martin [1 ,2 ,3 ]
Janke, Wolfhard [1 ,2 ]
Malakis, Anastasios [3 ,4 ]
机构
[1] Univ Leipzig, Inst Theoret Phys, Postfach 100 920, D-04009 Leipzig, Germany
[2] Doctoral Coll Stat Phys Complex Syst, Leipzig Lorraine Lviv Coventry L4, D-04009 Leipzig, Germany
[3] Coventry Univ, Appl Math Res Ctr, Coventry CV1 5FB, W Midlands, England
[4] Univ Athens, Sect Solid State Phys, Dept Phys, GR-15784 Panepistimiopolis, Zografou, Greece
来源
关键词
RENORMALIZATION-GROUP; ISING-MODEL; TRICRITICAL POINTS; TRIPLET IONS; 1ST-ORDER TRANSITIONS; 3-COMPONENT MODEL; CRITICAL-BEHAVIOR; DIMENSIONS; POTTS-MODEL; SYSTEMS;
D O I
10.1140/epjst/e2016-60337-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the pertinent features of the phase diagram of the zero-field Blume-Capel model, focusing on the aspects of transition order, finite-size scaling and universality. In particular, we employ a range of Monte Carlo simulation methods to study the 2D spin-1 Blume-Capel model on the square lattice to investigate the behavior in the vicinity of the first-order and second-order regimes of the ferromagnet-paramagnet phase boundary, respectively. To achieve high-precision results, we utilize a combination of (i) a parallel version of the multicanonical algorithm and (ii) a hybrid updating scheme combining Metropolis and generalized Wolff cluster moves. These techniques are combined to study for the first time the correlation length of the model, using its scaling in the regime of second-order transitions to illustrate universality through the observed identity of the limiting value of xi/L with the exactly known result for the Ising universality class.
引用
收藏
页码:789 / 804
页数:16
相关论文
共 50 条
  • [21] Random-bond and random-anisotropy effects in the phase diagram of the Blume-Capel model
    Puha, I
    Diep, HT
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 224 (01) : 85 - 92
  • [22] STABILITY SURFACE FOR THE BLUME-CAPEL MODEL
    TAGGART, GB
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1981, 105 (02): : 699 - 705
  • [23] CORRELATION OF FLUCTUATIONS IN THE BLUME-CAPEL MODEL
    MOTER, KG
    FISHMAN, RS
    PHYSICAL REVIEW B, 1992, 45 (10): : 5307 - 5314
  • [24] TRICRITICAL BEHAVIOR OF BLUME-CAPEL MODEL
    SAUL, DM
    WORTIS, M
    STAUFFER, D
    PHYSICAL REVIEW B, 1974, 9 (11): : 4964 - 4980
  • [25] Social Depolarization: Blume-Capel Model
    Kaufman, Miron
    Kaufman, Sanda
    Diep, Hung T.
    PHYSICS, 2024, 6 (01): : 138 - 147
  • [26] Phase transition in the Blume-Capel model with second neighbour interaction
    M. Badehdah
    S. Bekhechi
    A. Benyoussef
    M. Touzani
    The European Physical Journal B - Condensed Matter and Complex Systems, 1998, 4 : 431 - 440
  • [27] Phase segregation dynamics for the Blume-Capel model with Kac interaction?
    Marra, R
    Mourragui, M
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 88 (01) : 79 - 124
  • [28] Phase transition in the Blume-Capel model with second neighbour interaction
    Badehdah, M
    Bekhechi, S
    Benyoussef, A
    Touzani, M
    EUROPEAN PHYSICAL JOURNAL B, 1998, 4 (04): : 431 - 440
  • [29] Phase transitions in a triangular Blume-Capel antiferromagnet
    Zukovic, M.
    Bobak, A.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [30] THE SPIN-S BLUME-CAPEL RG FLOW DIAGRAM
    DEOLIVEIRA, SM
    DEOLIVEIRA, PMC
    DESABARRETO, FC
    JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (5-6) : 1619 - 1627