Percolation critical exponents in scale-free networks

被引:219
|
作者
Cohen, R [1 ]
ben-Avraham, D
Havlin, S
机构
[1] Bar Ilan Univ, Minerva Ctr, Ramat Gan, Israel
[2] Bar Ilan Univ, Dept Phys, Ramat Gan, Israel
[3] Clarkson Univ, Dept Phys, Potsdam, NY 13699 USA
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.66.036113
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the behavior of scale-free networks, having connectivity distribution P(k)similar tok(-lambda), close to the percolation threshold. We show that for networks with 3<lambda<4, known to undergo a transition at a finite threshold of dilution, the critical exponents are different than the expected mean-field values of regular percolation in infinite dimensions. Networks with 2<lambda<3 possess only a percolative phase. Nevertheless, we show that in this case percolation critical exponents are well defined, near the limit of extreme dilution (where all sites are removed), and that also then the exponents bear a strong lambda dependence. The regular mean-field values are recovered only for lambda>4.
引用
收藏
页码:1 / 036113
页数:4
相关论文
共 50 条
  • [31] Critical load and congestion instabilities in scale-free networks
    Moreno, Y
    Pastor-Satorras, R
    Vázquez, A
    Vespignani, A
    EUROPHYSICS LETTERS, 2003, 62 (02): : 292 - 298
  • [32] Percolating critical window for correlated scale-free networks
    Wang, L-h.
    Du, Y-m.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 664
  • [33] Three-State Majority-vote Model on Scale-Free Networks and the Unitary Relation for Critical Exponents
    Vilela, Andre L. M.
    Zubillaga, Bernardo J.
    Wang, Chao
    Wang, Minggang
    Du, Ruijin
    Stanley, H. Eugene
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [34] Three-State Majority-vote Model on Scale-Free Networks and the Unitary Relation for Critical Exponents
    André L. M. Vilela
    Bernardo J. Zubillaga
    Chao Wang
    Minggang Wang
    Ruijin Du
    H. Eugene Stanley
    Scientific Reports, 10
  • [35] CRITICAL EXPONENTS FOR PERCOLATION CONDUCTIVITY IN RESISTOR NETWORKS
    WEBMAN, I
    JORTNER, J
    COHEN, MH
    PHYSICAL REVIEW B, 1977, 16 (06): : 2593 - 2596
  • [36] Scale-free networks
    Barabási, AL
    Bonabeau, E
    SCIENTIFIC AMERICAN, 2003, 288 (05) : 60 - 69
  • [37] Scale-free enumeration of self-avoiding walks on critical percolation clusters
    Fricke, Niklas
    Janke, Wolfhard
    EPL, 2012, 99 (05)
  • [38] Critical phenomena in complex networks: from scale-free to random networks
    Nesterov, Alexander
    Villafuerte, Pablo Hector Mata
    EUROPEAN PHYSICAL JOURNAL B, 2023, 96 (11):
  • [39] Critical phenomena in complex networks: from scale-free to random networks
    Alexander Nesterov
    Pablo Héctor Mata Villafuerte
    The European Physical Journal B, 2023, 96
  • [40] Different thresholds of bond percolation in scale-free networks with identical degree sequence
    Zhang, Zhongzhi
    Zhou, Shuigeng
    Zou, Tao
    Chen, Lichao
    Guan, Jihong
    PHYSICAL REVIEW E, 2009, 79 (03)