CONVERGENCE OF A SPACE SEMI-DISCRETE MODIFIED MASS METHOD FOR THE DYNAMIC SIGNORINI PROBLEM

被引:0
|
作者
Doyen, D. [1 ]
Ern, A. [2 ]
机构
[1] EDF R&D, F-92141 Clamart, France
[2] Univ Paris Est, CERMICS, Ecole Ponts, F-77455 Marne La Vallee 2, France
关键词
Dynamic Signorini problem; unilateral contact; visco-elastic material; modified mass method; finite elements; convergence; compactness; CONTACT PROBLEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new space semi-discretization for the dynamic Signorini problem, based on a modification of the mass term, has been recently proposed. We prove the convergence of the space semi-discrete solutions to a solution of the continuous problem in the case of a visco-elastic material.
引用
收藏
页码:1063 / 1072
页数:10
相关论文
共 50 条
  • [21] Convergence of a semi-discrete finite difference scheme applied to the abstract Cauchy problem on a scale of Banach spaces
    Iso, Yuusuke
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2011, 87 (07) : 109 - 113
  • [22] MULTIPLICATIVE ERGODIC THEOREM OF SEMI-DISCRETE DYNAMIC SYSTEM
    Feng, Jiahui
    Yang, Xue
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (10) : 4393 - 4405
  • [23] A new face recognition method via semi-discrete decomposition for one sample problem
    Li, Li
    Gao, Jianqiang
    Ge, Hongwei
    OPTIK, 2016, 127 (19): : 7408 - 7417
  • [24] Local Convergence of the Continuous and Semi-Discrete Wavelet Transform in Lp(R)
    Navarro-Fuentes, Jaime
    Arellano-Balderas, Salvador
    Herrera-Alcantara, Oscar
    MATHEMATICS, 2021, 9 (05) : 1 - 15
  • [25] THE CONVERGENCE OF ff SCHEMES FOR CONSERVATION LAWS I: SEMI-DISCRETE CASE
    Jiang, Nan
    METHODS AND APPLICATIONS OF ANALYSIS, 2012, 19 (04) : 341 - 357
  • [26] The Semi-discrete Finite Element Method for the Cauchy Equation
    Hou, Lei
    Sun, Xianyan
    Qiu, Lin
    MECHANICAL COMPONENTS AND CONTROL ENGINEERING III, 2014, 668-669 : 1130 - +
  • [27] Convergence of semi-discrete exponential sampling operators in Mellin–Lebesgue spaces
    Carlo Bardaro
    Ilaria Mantellini
    Ilenia Tittarelli
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [28] Nearly Tight Convergence Bounds for Semi-discrete Entropic Optimal Transport
    Delalande, Alex
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [29] Dynamic Preservation for a Class of Semi-Discrete Recurrent Neural Networks
    Jia, Songfang
    Chen, Yanheng
    IEEE ACCESS, 2021, 9 : 89336 - 89343