Simulation of the Electrical Resistivity of an Ag-ZnO Electrocontact Composite Material

被引:2
|
作者
Zeer, G. M. [1 ]
Zelenkova, E. G. [1 ]
Kolbasina, N. A. [1 ]
Nikolaeva, N. S. [2 ]
P'yanzin, A. A. [1 ]
Kuchinskii, M. Yu [1 ]
Zelenkov, R. K. [1 ]
机构
[1] Siberian Fed Univ, Krasnoyarsk, Russia
[2] Russian Acad Sci, Nikolaev Inst Inorgan Chem, Siberian Branch, Novosibirsk, Russia
来源
RUSSIAN METALLURGY | 2021年 / 2021卷 / 01期
关键词
finite element method; finite element model; electrical resistivity; composite material; nanopowders;
D O I
10.1134/S0036029521010109
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Samples of an electrocontact composite material (CM) based on silver and reinforced with a zinc oxide nanopowder in an amount of 2-10 wt % are prepared by powder metallurgy. The microstructure of the CM samples is studied by electron microscopy and their electrical resistivity is determined. The mathematical simulation of the electrical resistivity was performed using the lattice model of an Ag-ZnO powder CM. To bring the structure of the finite element model to the structure of real electrocontact CM samples, which have with more complex geometry, as close as possible, we developed a program to automate the processes of constructing a finite element model of CM, applying boundary conditions, and solving and displaying results. To verify the generated CM model, we estimated the electrical resistivity of the lattice model CM for various nonconducting-component volumes in comparison with an analytical calculation and experimental results.
引用
收藏
页码:62 / 67
页数:6
相关论文
共 50 条
  • [31] Growth and Improvement of Ag-ZnO Nanocomposites for Photocatalytic Activity)
    Ayob, M. T. M.
    Mohd, H. M. K.
    Rahman, I. Abdul
    Mohamed, F.
    Hidzir, N. M.
    Radiman, S.
    SAINS MALAYSIANA, 2016, 45 (08): : 1265 - 1273
  • [32] Enhanced Photocatalysis of Electrospun Ag-ZnO Heterostructured Nanofibers
    Lin, Dandan
    Wu, Hui
    Zhang, Rut
    Pan, Wei
    CHEMISTRY OF MATERIALS, 2009, 21 (15) : 3479 - 3484
  • [33] Effect of lithium addition on density and oxide-phase morphology of Ag-ZnO electrical contact materials
    Joshia, PB
    Krishnan, PS
    Patel, RH
    Gadgeel, VL
    Ramakrishnan, P
    Kaushik, VK
    MATERIALS LETTERS, 1997, 33 (3-4) : 137 - 141
  • [34] Chonemorpha grandiflora extract mediated synthesis of Ag-ZnO nanoparticles for its anticancer, electrical and dielectric applications
    Ambujakshi, N. P.
    Raveesha, H. R.
    Manohara, S. R.
    Dhananjaya, N.
    Pratibha, S.
    Shivakumara, C.
    MATERIALS RESEARCH EXPRESS, 2019, 6 (09):
  • [35] Effects of Oxide-Modified Spherical ZnO on Electrical Properties of Ag/ZnO Electrical Contact Material
    Zhijun Wei
    Lingjie Zhang
    Tao Shen
    Zhengyang Qiao
    Hui Yang
    Xianping Fan
    Lawson Chen
    Journal of Materials Engineering and Performance, 2016, 25 : 3662 - 3671
  • [36] Effects of Oxide-Modified Spherical ZnO on Electrical Properties of Ag/ZnO Electrical Contact Material
    Wei, Zhijun
    Zhang, Lingjie
    Shen, Tao
    Qiao, Zhengyang
    Yang, Hui
    Fan, Xianping
    Chen, Lawson
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2016, 25 (09) : 3662 - 3671
  • [37] Enhanced UV photoresponse from heterostructured Ag-ZnO nanowires
    Lin, Dandan
    Wu, Hui
    Zhang, Wei
    Li, Heping
    Pan, Wei
    APPLIED PHYSICS LETTERS, 2009, 94 (17)
  • [38] Ag-ZnO catalysts for UV-photodegradation of methylene blue
    Height, MJ
    Pratsinis, SE
    Mekasuwandumrong, O
    Praserthdam, P
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2006, 63 (3-4) : 305 - 312
  • [39] Soapnut plant–mediated ZnO and Ag-ZnO nanoparticles for environmental and biological applications
    Deepak Sharma
    Ritesh Verma
    Ankush Chauhan
    Swati Kumari
    Pankaj Thakur
    Vinod Kumar
    Mamta Sharma
    Pradeep Kumar
    Ambrish K. Mahajan
    Emergent Materials, 2023, 6 : 1841 - 1862
  • [40] Study of Ag/ZnO composite material by universal power law
    Yin Gui-Lai
    Li Jian-Ying
    Li Sheng-Tao
    ACTA PHYSICA SINICA, 2009, 58 (06) : 4219 - 4224