Symmetrical subgroups of Artin groups

被引:14
|
作者
Crisp, J [1 ]
机构
[1] Univ Southampton, Fac Math Studies, Southampton SO17 1BJ, Hants, England
关键词
D O I
10.1006/aima.1999.1895
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the subgroup fixed by a group of symmetries of an Artin system (A, S) is itself an Artin group under the hyothesis that the Deligne complex associated to A admits a suitable CAT(0) metric. Such a metric is known to exist For all Artin groups of type FC, which include all the finite type Artin groups as well as many infinite types. We also recover the previously known analogous result for an arbitrary Coxeter system (W, S). (C) 2000 Academic Press.
引用
收藏
页码:159 / 177
页数:19
相关论文
共 50 条
  • [31] Constructing presentations of subgroups of right-angled Artin groups
    Martin R. Bridson
    Michael Tweedale
    Geometriae Dedicata, 2014, 169 : 1 - 14
  • [32] Separating quasiconvex subgroups of right-angled Artin groups
    Tim Hsu
    Daniel T. Wise
    Mathematische Zeitschrift, 2002, 240 : 521 - 548
  • [33] Separating quasiconvex subgroups of right-angled Artin groups
    Hsu, T
    Wise, DT
    MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (03) : 521 - 548
  • [34] On right-angled Artin groups without surface subgroups
    Kim, Sang-hyun
    GROUPS GEOMETRY AND DYNAMICS, 2010, 4 (02) : 275 - 307
  • [35] Right-angled Artin groups as normal subgroups of mapping class groups
    Clay, Matt
    Mangahas, Johanna
    Margalit, Dan
    COMPOSITIO MATHEMATICA, 2021, 157 (08) : 1807 - 1852
  • [36] Constructing presentations of subgroups of right-angled Artin groups
    Bridson, Martin R.
    Tweedale, Michael
    GEOMETRIAE DEDICATA, 2014, 169 (01) : 1 - 14
  • [37] Dehn functions of subgroups of right-angled Artin groups
    Noel Brady
    Ignat Soroko
    Geometriae Dedicata, 2019, 200 : 197 - 239
  • [38] On parabolic subgroups of Artin-Tits groups of spherical type
    Cumplido, Maria
    Gebhardt, Volker
    Gonzalez-Meneses, Juan
    Wiest, Bert
    ADVANCES IN MATHEMATICS, 2019, 352 : 572 - 610
  • [39] SOLUBLE SUBGROUPS OF SYMMETRICAL AND LINEAR-GROUPS
    MANN, A
    ISRAEL JOURNAL OF MATHEMATICS, 1986, 55 (02) : 162 - 172
  • [40] MAXIMAL-SUBGROUPS OF INFINITE SYMMETRICAL GROUPS
    BRAZIL, M
    COVINGTON, J
    PENTTILA, T
    PRAEGER, CE
    WOODS, AR
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1994, 68 : 77 - 111