Numerical solution of Fokker-Planck equation for single domain particles

被引:3
|
作者
Peskov, N., V [1 ]
Semendyaeva, N. L. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Computat Math & Cybernet, Moscow, Russia
关键词
Single domain particles; Fokker-Planck equation; Finite element solution; Dynamic hysteresis; COMPLEX MAGNETIC-SUSCEPTIBILITY; SUPERPARAMAGNETIC PARTICLES; RELAXATION-TIME;
D O I
10.1016/j.physb.2019.07.004
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Fokker-Planck equation proposed by Brown to describe the evolution of the probability distribution density of the orientation of the magnetic moment of a single-domain particle is usually solved by expanding the unknown function in a series of spherical harmonics. In this paper, we use a different method to solve the Fokker-Planck equation, namely, the finite element method. We describe the procedure for constructing a triangular grid on the surface of a sphere and give formulas for calculating the coefficients of the equations for the probability density values at the grid nodes. As an example, the results of calculating the dynamic magnetic hysteresis for particles with cubic anisotropy are demonstrated.
引用
收藏
页码:142 / 148
页数:7
相关论文
共 50 条
  • [21] Numerical solution of the four-dimensional nonstationary Fokker-Planck equation
    Wojtkiewicz, SF
    Bergman, LA
    Spencer, BF
    Johnson, EA
    IUTAM SYMPOSIUM ON NONLINEARITY AND STOCHASTIC STRUCTURAL DYNAMICS, 2001, 85 : 271 - 287
  • [22] Numerical Solution of Fokker-Planck Equation for Nonlinear Stochastic Dynamical Systems
    Narayanan, S.
    Kumar, Pankaj
    IUTAM SYMPOSIUM ON NONLINEAR STOCHASTIC DYNAMICS AND CONTROL, 2011, 29 : 77 - +
  • [23] NUMERICAL-SOLUTION FOR THE NON-LINEAR FOKKER-PLANCK EQUATION
    INDIRA, R
    LECTURE NOTES IN PHYSICS, 1983, 184 : 122 - 124
  • [24] NUMERICAL-SOLUTION OF THE FOKKER-PLANCK EQUATION - A FAST AND ACCURATE ALGORITHM
    PALLESCHI, V
    SARRI, F
    MARCOZZI, G
    TORQUATI, MR
    PHYSICS LETTERS A, 1990, 146 (7-8) : 378 - 386
  • [25] Numerical solution of the Fokker-Planck equation via Gaussian superposition representation
    Pradlwarter, HJ
    Vasta, M
    STRUCTURAL SAFETY AND RELIABILITY, VOLS. 1-3, 1998, : 917 - 923
  • [26] NUMERICAL SOLUTION OF TIME-FRACTIONAL ORDER FOKKER-PLANCK EQUATION
    Prakash, Amit
    Kumar, Manoj
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03): : 446 - 454
  • [27] Numerical method for the nonlinear Fokker-Planck equation
    Zhang, DS
    Wei, GW
    Kouri, DJ
    Hoffman, DK
    PHYSICAL REVIEW E, 1997, 56 (01): : 1197 - 1206
  • [28] COMMENT ON A TRANSIENT SOLUTION OF FOKKER-PLANCK EQUATION
    SHI, YY
    AIAA JOURNAL, 1965, 3 (06) : 1212 - &
  • [29] ML Estimation of the Parameters of SDEs by Numerical Solution of the Fokker-Planck Equation
    Hurn, A. S.
    Jeisman, J.
    Lindsay, K. A.
    MODSIM 2005: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING, 2005, : 849 - 855
  • [30] NUMERICAL EXPERIENCES ON NONLINEAR FOKKER-PLANCK EQUATION
    BRAUN, JC
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1971, 272 (20): : 1178 - &