Inequalities for the Euler-Mascheroni constant

被引:25
|
作者
Chen, Chao-Ping [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat, Jiaozuo City 454003, Henan, Peoples R China
关键词
Euler's constant; Harmonic numbers; Inequality; Psi function; Asymptotic expansion; CONVERGENCE;
D O I
10.1016/j.aml.2009.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let gamma = 0.577215... be the Euler-Mascheroni constant, and let R-n = Sigma(n)(k=1) 1/k - log (n + 1/2). We prove that for all integers n >= 1. 1/24(n +a)(2) <= R-n - gamma < 1/24(n + b)(2) with the best possible constants a = - 1/root 24[-gamma + 1 - log(3/2)] - 1 = 0.55106 ... and b = 1/2. This refines the result of D. W. DeTemple, who proved that the double inequality holds with a = 1 and b = 0. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:161 / 164
页数:4
相关论文
共 50 条
  • [21] Inequalities for the Lugo and Euler-Mascheroni constants
    Chen, Chao-Ping
    APPLIED MATHEMATICS LETTERS, 2012, 25 (05) : 787 - 792
  • [22] Optimal bounds for the generalized Euler-Mascheroni constant
    Huang, Ti-Ren
    Han, Bo-Wen
    Ma, Xiao-Yan
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [23] Fast convergences towards Euler-Mascheroni constant
    Mortici, Cristinel
    COMPUTATIONAL & APPLIED MATHEMATICS, 2010, 29 (03): : 479 - 491
  • [24] AN APPROXIMATION FORMULA FOR EULER-MASCHERONI'S CONSTANT
    Panzone, Pablo A.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2016, 57 (01): : 9 - 22
  • [25] A solution to an open problem on the Euler-Mascheroni constant
    Gavrea, Ioan
    Ivan, Mircea
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 224 : 54 - 57
  • [26] A new sequence related to the Euler-Mascheroni constant
    Wu, Shanhe
    Bercu, Gabriel
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [27] Inequalities and monotonicity properties for the psi (or digamma) function and estimates for the Euler-Mascheroni constant
    Chen, Chao-Ping
    Srivastava, H. M.
    Li, Li
    Manyama, Seiichi
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (09) : 681 - 693
  • [28] Approximants of the Euler-Mascheroni constant and harmonic numbers
    Buric, Tomislav
    Elezovic, Neven
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 : 604 - 611
  • [29] A new sequence convergent to Euler-Mascheroni constant
    You, Xu
    Chen, Di-Rong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [30] SHARPNESS OF NEGOI'S INEQUALITY FOR THE EULER-MASCHERONI CONSTANT
    Chen, Chao-Ping
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 3 (01): : 134 - 141