Inequalities for the Euler-Mascheroni constant

被引:25
|
作者
Chen, Chao-Ping [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat, Jiaozuo City 454003, Henan, Peoples R China
关键词
Euler's constant; Harmonic numbers; Inequality; Psi function; Asymptotic expansion; CONVERGENCE;
D O I
10.1016/j.aml.2009.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let gamma = 0.577215... be the Euler-Mascheroni constant, and let R-n = Sigma(n)(k=1) 1/k - log (n + 1/2). We prove that for all integers n >= 1. 1/24(n +a)(2) <= R-n - gamma < 1/24(n + b)(2) with the best possible constants a = - 1/root 24[-gamma + 1 - log(3/2)] - 1 = 0.55106 ... and b = 1/2. This refines the result of D. W. DeTemple, who proved that the double inequality holds with a = 1 and b = 0. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:161 / 164
页数:4
相关论文
共 50 条
  • [1] On the Euler-Mascheroni constant
    Macys, J. J.
    MATHEMATICAL NOTES, 2013, 94 (5-6) : 647 - 652
  • [2] Limits and inequalities associated with the Euler-Mascheroni constant
    Chen, Chao-Ping
    Mortici, Cristinel
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (18) : 9755 - 9761
  • [3] Continued fraction inequalities for the Euler-Mascheroni constant
    Xu, Hongmin
    You, Xu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [4] Approximation formulas and inequalities for the Euler-Mascheroni constant
    Chao-Ping Chen
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [5] EULER-MASCHERONI CONSTANT
    BARNES, ER
    KAUFMAN, WE
    CHESSIN, PL
    GOLDBERG, M
    HANSEN, E
    ZEITLIN, D
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (09): : 1023 - &
  • [6] Continued fraction inequalities for the Euler-Mascheroni constant
    Hongmin Xu
    Xu You
    Journal of Inequalities and Applications, 2014
  • [7] Approximation formulas and inequalities for the Euler-Mascheroni constant
    Chen, Chao-Ping
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (02)
  • [8] On the Euler-Mascheroni constant
    J. J. Mačys
    Mathematical Notes, 2013, 94 : 647 - 652
  • [9] IMPROVING SOME INEQUALITIES ASSOCIATED WITH THE EULER-MASCHERONI CONSTANT
    Cringanu, Jenica
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (03): : 667 - 673
  • [10] FORMULAS FOR THE EULER-MASCHERONI CONSTANT
    Panzone, Pablo A.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2009, 50 (01): : 161 - 164