Machine-learning identification of asteroid groups

被引:17
|
作者
Carruba, V. [1 ]
Aljbaae, S. [2 ]
Lucchini, A. [1 ]
机构
[1] Sao Paulo State Univ UNESP, Sch Nat Sci & Engn, BR-12516410 Guaratingueta, SP, Brazil
[2] Natl Space Res Inst INPE, Div Space Mech & Control, CP 515, BR-12227310 Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会; 美国国家航空航天局;
关键词
methods: data analysis; celestial mechanics; minor planets; asteroids:; general; FAMILIES; REGION;
D O I
10.1093/mnras/stz1795
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Asteroid families are groups of asteroids that share a common origin. They can be the outcome of a collision or be the result of the rotational failure of a parent body or its satellites. Collisional asteroid families have been identified for several decades using hierarchical clustering methods (HCMs) in proper elements domains. In this method, the distance of an asteroid from a reference body is computed, and, if it is less than a critical value, the asteroid is added to the family list. The process is then repeated with the new object as a reference, until no new family members are found. Recently, new machine-learning clustering algorithms have been introduced for the purpose of cluster classification. Here, we apply supervised-learning hierarchical clustering algorithms for the purpose of asteroid families identification. The accuracy, precision, and recall values of results obtained with the new method, when compared with classical HCM, show that this approach is able to found family members with an accuracy above 89.5 per cent, and that all asteroid previously identified as family members by traditional methods are consistently retrieved. Values of the areas under the curve coefficients below Receiver Operating Characteristic curves are also optimal, with values consistently above 85 per cent. Overall, we identify 6 new families and 13 new clumps in regions where the method can be applied that appear to be consistent and homogeneous in terms of physical and taxonomic properties. Machine-learning clustering algorithms can, therefore, be very efficient and fast tools for the problem of asteroid family identification.
引用
收藏
页码:1377 / 1386
页数:10
相关论文
共 50 条
  • [41] A comprehensive revisit of the machine-learning tools developed for the identification of enhancers in the human genome
    Phan, Le Thi
    Oh, Changmin
    He, Tao
    Manavalan, Balachandran
    PROTEOMICS, 2023, 23 (13-14)
  • [42] Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy
    Lei, Benjamin
    Bissonnette, Justine R.
    Hogan, Una E.
    Bec, Avery E.
    Feng, Xinyi
    Smith, Rodney D. L.
    ANALYTICAL CHEMISTRY, 2022, 94 (49) : 17011 - 17019
  • [43] Unsupervised Machine-learning Algorithms for the Identification of Clinical Phenotypes in the Osteoarthritis Initiative Database
    Demanse, David
    Tanko, Laszlo B.
    Lustenberger, Patrick
    Nikolaus, Philipp
    Rasin, Ilja
    Brennan, Damian F.
    Saxer, Franziska
    Roubenoff, Ronenn
    Premji, Sumehra
    Conaghan, Philip
    Schieker, Matthias
    ARTHRITIS & RHEUMATOLOGY, 2021, 73 : 419 - 421
  • [44] Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy
    Xiaoyang Lin
    Zhizhong Si
    Wenzhi Fu
    Jianlei Yang
    Side Guo
    Yuan Cao
    Jin Zhang
    Xinhe Wang
    Peng Liu
    Kaili Jiang
    Weisheng Zhao
    Nano Research, 2018, 11 : 6316 - 6324
  • [45] Identification of marker genes in Alzheimer's disease using a machine-learning model
    Madar, Inamul Hasan
    Sultan, Ghazala
    Tayubi, Iftikhar Aslam
    Hasan, Atif Noorul
    Pahi, Bandana
    Rai, Anjali
    Sivanandan, Pravitha Kasu
    Loganathan, Tamizhini
    Begum, Mahamuda
    Rai, Sneha
    BIOINFORMATION, 2021, 17 (02) : 348 - 355
  • [46] Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy
    Lin, Xiaoyang
    Si, Zhizhong
    Fu, Wenzhi
    Yang, Jianlei
    Guo, Side
    Cao, Yuan
    Zhang, Jin
    Wang, Xinhe
    Liu, Peng
    Jiang, Kaili
    Zhao, Weisheng
    NANO RESEARCH, 2018, 11 (12) : 6316 - 6324
  • [47] Machine-Learning and Physics-Based Tool for Anomaly Identification in Propulsion Systems
    Engelstad, Sean P.
    Darr, Samuel R.
    Knighton, Talbot A.
    Taliaferro, Matthew
    Goyal, Vinay K.
    Kennedy, Graeme J.
    JOURNAL OF SPACECRAFT AND ROCKETS, 2024, 61 (05) : 1219 - 1232
  • [49] Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques
    Sirunyan, A. M.
    Tumasyan, A.
    Adam, W.
    Ambrogi, F.
    Bergauer, T.
    Brandstetter, J.
    Dragicevic, M.
    Eroe, J.
    Del Valle, A. Escalante
    Flechl, M.
    Fruehwirth, R.
    Jeitler, M.
    Krammer, N.
    Kraetschmer, I
    Liko, D.
    Madlener, T.
    Mikulec, I
    Rad, N.
    Schieck, J.
    Schoefbeck, R.
    Spanring, M.
    Spitzbart, D.
    Waltenberger, W.
    Wulz, C-E
    Zarucki, M.
    Drugakov, V
    Mossolov, V
    Gonzalez, J. Suarez
    Darwish, M. R.
    De Wolf, E. A.
    Di Croce, D.
    Janssen, X.
    Lelek, A.
    Pieters, M.
    Sfar, H. Rejeb
    Van Haevermaet, H.
    Van Mechelen, P.
    Van Putte, S.
    Van Remortel, N.
    Blekman, F.
    Bols, E. S.
    Chhibra, S. S.
    D'Hondt, J.
    De Clercq, J.
    Lontkovskyi, D.
    Lowette, S.
    Marchesini, I
    Moortgat, S.
    Python, Q.
    Skovpen, K.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (06):
  • [50] How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach
    Ichikawa, Daisuke
    Saito, Toki
    Ujita, Waka
    Oyama, Hiroshi
    JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 64 : 20 - 24