Surface Defect Detection based on Improved YOLOv3-Tiny Algorithm

被引:0
|
作者
Yuan, Huaqing [1 ]
He, Yi [1 ]
Zheng, Xuan [1 ]
Li, Changbin [1 ]
Wu, Aiguo [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
来源
2022 41ST CHINESE CONTROL CONFERENCE (CCC) | 2022年
关键词
Defect Detection; YOLO; Attention Mechanism; Automated industry; CLASSIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To take into account both accuracy and real-time performance in surface defect detection, we propose a new surface defect detection algorithm based on YOLOv3- Tiny. The algorithm first adds a YOLO layer that fuses shallow and deep features on the basis of YOLOv3- Tmy, to enhance the capabilities of microscopic defect detection through multi-scale features fusion. And the hybrid attention mechanism module, named SE-C, is employed before every YOLO layer. The SE-C module can decrease e weight of irrelevant back ound's features while improving the weight of the defect's features, it will improve the algorithm s robustness and accuracy. Finally, the algorithm re-clusters the anchor boxes based on K-means in each dataset. The experimental results reveal the improved algorithm has a good trade-off between the accuracy and the speed of defect detection, especially in easilyconfused background. More importantly, the algorithm can also be applied to other object detection on similar scenes.
引用
收藏
页码:5769 / 5774
页数:6
相关论文
共 50 条
  • [21] The Shrank YoloV3-Tiny for spinal fracture lesions detection
    Sha, Gang
    Wu, Junsheng
    Yu, Bin
    Journal of Intelligent and Fuzzy Systems, 2022, 42 (03): : 2809 - 2828
  • [22] Strip Steel Surface Defect Detection Based on Improved YOLOv3 Algorithm
    Li W.-G.
    Ye X.
    Zhao Y.-T.
    Wang W.-B.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (07): : 1284 - 1292
  • [23] The Shrank YoloV3-tiny for spinal fracture lesions detection
    Sha, Gang
    Wu, Junsheng
    Yu, Bin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (03) : 2809 - 2828
  • [24] Surface defect detection algorithm based on improved YOLOv4
    Li B.
    Wang C.
    Ding X.
    Ju H.
    Guo Z.
    Li Z.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (03): : 710 - 717
  • [25] Mask Wearing Detection Algorithm Based on Improved Tiny YOLOv3
    Liu, Guohua
    Zhang, Qintao
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (07)
  • [26] An improved tiny-yolov3 pedestrian detection algorithm
    Zhang, Yi
    Shen, Yongliang
    Zhang, Jun
    OPTIK, 2019, 183 : 17 - 23
  • [27] Systolic Array based FPGA accelerator for Yolov3-tiny
    Velicheti, Prithvi
    Pentapati, Sivani
    Purini, Suresh
    2022 IEEE HIGH PERFORMANCE EXTREME COMPUTING VIRTUAL CONFERENCE (HPEC), 2022,
  • [28] Lightweight Surface Defect Detection Algorithm Based on Improved YOLOv5
    Yang, Kaijun
    Chen, Tao
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 798 - 802
  • [29] A Steel Surface Defect Detection Algorithm Based on Improved YOLOv7
    Mao, Yihai
    Zhang, Hongyi
    Gao, Xingen
    Luan, Shen
    Lin, Yuxing
    Qi, Xuanhao
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1096 - 1101
  • [30] Surface defect detection of steel based on improved YOLOv5 algorithm
    Jiang, Yiwen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19858 - 19870