Atmospheric cold plasma-assisted pineapple peel waste hydrolysate detoxification for the production of bacterial cellulose

被引:51
|
作者
Santoso, Shella Permatasari [1 ,2 ]
Lin, Shin-Ping [3 ]
Wang, Tan-Ying [4 ,5 ]
Ting, Yuwen [4 ]
Hsieh, Chang-Wei [6 ]
Yu, Roch-Chui [4 ]
Angkawijaya, Artik Elisa [7 ]
Soetaredjo, Felycia Edi [1 ,2 ]
Hsu, Hsien-Yi [8 ,9 ,10 ]
Cheng, Kuan-Chen [4 ,5 ,11 ,12 ]
机构
[1] Widya Mandala Surabaya Catholic Univ, Chem Engn Dept, 37 Kalijudan Rd, Surabaya 60114, East Java, Indonesia
[2] Natl Taiwan Univ Sci & Technol, Chem Engn Dept, 43,Sec 4,Keelung Rd, Taipei 10607, Taiwan
[3] Taipei Med Univ, Sch Food Safety, 250 Wuxing St, Taipei 11042, Taiwan
[4] Natl Taiwan Univ, Inst Food Sci & Technol, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[5] Natl Taiwan Univ, Inst Biotechnol, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[6] Natl Chung Hsing Univ, Dept Food Sci & Biotechnol, 145 Xingda Rd, Taichung 40227, Taiwan
[7] Natl Taiwan Univ Sci & Technol, Grad Inst Appl Sci & Technol, 43,Sec 4,Keelung Rd, Taipei 10607, Taiwan
[8] City Univ Hong Kong, Sch Energy & Environm, Kowloon Tong, Hong Kong, Peoples R China
[9] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon Tong, Hong Kong, Peoples R China
[10] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[11] China Med Univ, China Med Univ Hosp, Dept Med Res, 91 Hsueh Shih Rd, Taichung 40402, Taiwan
[12] Asia Univ, Dept Optometry, 500 Lioufeng Rd, Taichung 41354, Taiwan
关键词
Pineapple peel waste; Atmospheric cold plasma; Bacterial cellulose;
D O I
10.1016/j.ijbiomac.2021.01.169
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Toxic compounds in pineapple peel waste hydrolysate (PPWH), namely formic acid, 5-hydroxymethylfurfural (HMF), and furfural, are the major predicament in its utilization as a carbon source for bacterial cellulose (BC) fermentation. A rapid detoxification procedures using atmospheric cold plasma (ACP) technique were employed to reduce the toxic compounds. ACP treatment allows the breakdown of toxic compounds without causing excessive breakdown of sugars. Herein, the performance of two available laboratory ACP reactors for PPWH detoxification was being demonstrated. ACP-reactor-1 (R1) runs on plasma power of 80-200Wwith argon (Ar) plasma source, while ACP-reactor-2 (R2) runs at 500-600Wwith air plasma source. Treatment in R1, at 200Wfor 15min, results in 74.06%, 51.38%, and 21.81% reduction of furfural, HMF, and formic acid. Treatment in R2 at 600Wgives 45.05%, 32.59%, and 60.41% reductions of furfural, HMF, and formic acid. The BC yield from the fermentation of Komagateibacter xylinus in the R1-treated PPWH, R2-treated PPWH, and untreated-PPWH is 2.82, 3.82, and 2.97 g/L, respectively. The results show that ACP treatment provides a novel detoxified strategy in achieving agricultural waste hydrolysate reuse in fermentation. Furthermore, the results also imply that untreated PPWH can be an inexpensive and sustainable resource for fermentation media supplementation. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:526 / 534
页数:9
相关论文
共 34 条
  • [21] Plasma-assisted preparation of Ni/SiO2 catalyst using atmospheric high frequency cold plasma jet
    Liu, Gaihuan
    Li, Yuliang
    Chu, Wei
    Shi, Xinyu
    Dai, Xiaoyan
    Yin, Yongxiang
    CATALYSIS COMMUNICATIONS, 2008, 9 (06) : 1087 - 1091
  • [22] Enhanced Corrosion Protection of Printed Circuit Board Electronics using Cold Atmospheric Plasma-Assisted SiOx Coatings
    Kasi, Venkat
    Tien, Jia-Huei
    Rahman, Md Mahabubur
    Rana, Muhammad Masud
    Rivera, Ulisses Alberto Heredia
    Shang, Zhongxia
    Vidhyadhiraja, Advika
    Zhang, Jingxuan
    Youngblood, Jeffrey P.
    Bahr, David F.
    Rahimi, Rahim
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (36) : 48293 - 48306
  • [23] Cold atmospheric pressure plasma-assisted removal of aflatoxin B1 from contaminated corn kernels
    Hojnik, Natasa
    Modic, Martina
    Zigon, Dusan
    Kovac, Janez
    Jurov, Andrea
    Dickenson, Aaron
    Walsh, James L.
    Cvelbar, Uros
    PLASMA PROCESSES AND POLYMERS, 2021, 18 (01)
  • [24] Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus
    Fan, Xin
    Gao, Yue
    He, Wanying
    Hu, Hao
    Tian, Ming
    Wang, Kexing
    Pan, Siyi
    CARBOHYDRATE POLYMERS, 2016, 151 : 1068 - 1072
  • [25] Taguchi method optimization of syngas production via pineapple waste pyrolysis using atmospheric pressure microwave plasma
    Dermawan, Denny
    Tsai, Da-Wei
    Yudoyono, Gangsar Satrio
    You, Sheng-Jie
    Hsieh, Yen-Kung
    RENEWABLE ENERGY, 2024, 231
  • [26] The potential of atmospheric air cold plasma for control of bacterial contaminants relevant to cereal grain production
    Los, Agata
    Ziuzina, Dana
    Boehm, Daniela
    Cullen, Patrick J.
    Bourke, Paula
    INNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES, 2017, 44 : 36 - 45
  • [27] Biosyngas production by autothermal reforming of waste cooking oil with propane using a plasma-assisted gliding arc reactor
    Rafiq, M. H.
    Hustad, J. E.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (14) : 8221 - 8233
  • [28] Cold atmospheric pressure plasma-assisted aerosol deposition of multi-colored dual band electrochromic VOxCyNz thin films
    Lin, Yung-Sen
    Zhong, Wei-Cheng
    Zhang, Gong-Min
    Chen, Pei-Tsz
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 275
  • [29] Integrated biorefinery development for the extraction of value-added components and bacterial cellulose production from orange peel waste streams
    Tsouko, Erminta
    Maina, Sofia
    Ladakis, Dimitrios
    Kookos, Ioannis K.
    Koutinas, Apostolis
    RENEWABLE ENERGY, 2020, 160 : 944 - 954
  • [30] Enhanced Osteogenic Differentiation via Collagen and BMP-2 Mimetic Peptide Conjugation to β-TCP Scaffolds Using a Cold Atmospheric Plasma-Assisted Strategy
    Pulat, Gunnur
    Bilgic, Eda
    Ercan, Utku Kursat
    Karaman, Ozan
    ACS APPLIED BIO MATERIALS, 2025, 8 (03): : 2569 - 2579