Automatic Bridge Crack Detection Using a Convolutional Neural Network

被引:168
|
作者
Xu, Hongyan [1 ]
Su, Xiu [1 ]
Wang, Yi [1 ]
Cai, Huaiyu [1 ]
Cui, Kerang [1 ]
Chen, Xiaodong [1 ]
机构
[1] Tianjin Univ, Sch Precis Instruments & Optoelect Engn, Tianjin 300072, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 14期
关键词
deep learning; image classification; bridge crack detection;
D O I
10.3390/app9142867
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Concrete bridge crack detection is critical to guaranteeing transportation safety. The introduction of deep learning technology makes it possible to automatically and accurately detect cracks in bridges. We proposed an end-to-end crack detection model based on the convolutional neural network (CNN), taking the advantage of atrous convolution, Atrous Spatial Pyramid Pooling (ASPP) module and depthwise separable convolution. The atrous convolution obtains a larger receptive field without reducing the resolution. The ASPP module enables the network to extract multi-scale context information, while the depthwise separable convolution reduces computational complexity. The proposed model achieved a detection accuracy of 96.37% without pre-training. Experiments showed that, compared with traditional classification models, the proposed model has a better performance. Besides, the proposed model can be embedded in any convolutional network as an effective feature extraction structure.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Automatic plant disease detection using computationally efficient convolutional neural network
    Rizwan, Muhammad
    Bibi, Samina
    Ul Haq, Sana
    Asif, Muhammad
    Jan, Tariqullah
    Zafar, Mohammad Haseeb
    ENGINEERING REPORTS, 2024,
  • [32] Automatic detection of objects on star sky images by using the convolutional neural network
    Bobrovsky, A. I.
    Galeeva, M. A.
    Morozov, A. V.
    Pavlov, V. A.
    Tsytsulin, A. K.
    INTERNATIONAL CONFERENCE EMERGING TRENDS IN APPLIED AND COMPUTATIONAL PHYSICS 2019 (ETACP-2019), 2019, 1236
  • [33] A NOVEL METHOD FOR AUTOMATIC DETECTION OF ARRHYTHMIAS USING THE UNSUPERVISED CONVOLUTIONAL NEURAL NETWORK
    Zhang, Junming
    Yao, Ruxian
    Gao, Jinfeng
    Li, Gangqiang
    Wu, Haitao
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2023, 13 (03) : 181 - 196
  • [34] Automatic Detection of Hydrodynamical and Biological Indicators of the Shoreline Using a Convolutional Neural Network
    Bengoufa, Soumia
    Niculescu, Simona
    Mihoubi, Mustapha Kamel
    Belkessa, Rabah
    Abbad, Katia
    EUROPEAN SPATIAL DATA FOR COASTAL AND MARINE REMOTE SENSING, EUCOMARE 2022, 2023, : 191 - 205
  • [35] Improved Crack Detection and Recognition Based on Convolutional Neural Network
    Chen, Keqin
    Yadav, Amit
    Khan, Asif
    Meng, Yixin
    Zhu, Kin
    MODELLING AND SIMULATION IN ENGINEERING, 2019, 2019
  • [36] Method of convolutional neural network with hybrid attention for crack detection
    Qu, Zhong
    Chen, Shuwei
    Li, Yanxin
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (05)
  • [37] CRACK DETECTION IN HISTORICAL STRUCTURES BASED ON CONVOLUTIONAL NEURAL NETWORK
    Chaiyasarn, Krisada
    Sharma, Mayank
    Ali, Luqman
    Khan, Wasif
    Poovarodom, Nakhon
    INTERNATIONAL JOURNAL OF GEOMATE, 2018, 15 (51): : 240 - 251
  • [38] Crack grid detection and calculation based on convolutional neural network
    Xiao, Liyang
    Li, Wei
    Ju Huyan
    Sun, Zhaoyun
    Tighe, Susan
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 2021, 48 (09) : 1192 - 1205
  • [39] Intelligent Graph Convolutional Neural Network for Road Crack Detection
    Djenouri, Youcef
    Belhadi, Asma
    Houssein, Essam H.
    Srivastava, Gautam
    Lin, Jerry Chun-Wei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8475 - 8482
  • [40] Automatic detection of fatigue crack paths using digital image correlation and convolutional neural networks
    Strohmann, Tobias
    Starostin-Penner, Denis
    Breitbarth, Eric
    Requena, Guillermo
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2021, 44 (05) : 1336 - 1348