Modeling aquatic vegetation in computational fluid dynamics studies

被引:0
|
作者
Yamasaki, Tais Natsumi [1 ]
Silva de Lima, Paulo Henrique [1 ]
Machado Xavier, Manoel Lucas [1 ]
Janzen, Johannes Gerson [1 ]
机构
[1] Univ Fed Mato Grosso do Sul, Campo Grande, MS, Brazil
关键词
computation fluid dynamics; porous media; simplified geometric elements; vegetation patch; wetland; CIRCULAR ARRAY; FLOW-THROUGH; PATTERNS; HYDRODYNAMICS; DEPOSITION; TURBULENCE; PATCHES;
D O I
10.1590/S1413-415220180052
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The goal of this work was to present, through computation fluid dynamics (CFD), two methods used in the conceptual and physical representation of vegetation in aquatic environments: the porous media approach and the simplified geometric elements. Three case studies, including a floating wetland and patches of vegetation, exemplify how the methods are applied, showing their advantages and disadvantages. At the geometry and meshing stage, the porous media approach shows to be simpler, faster, and more practical than the simplified geometric elements. However, in the equation modeling, the porous media approach is not able to capture the mixing processes inside the vegetation, while the simplified geometric elements method can capture those processes.
引用
收藏
页码:97 / 104
页数:8
相关论文
共 50 条
  • [21] Assessment of spillway modeling using computational fluid dynamics
    Chanel, Paul G.
    Doering, John C.
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 2008, 35 (12) : 1481 - 1485
  • [22] Modeling and simulating engineering processes with computational fluid dynamics
    Laurentiu Nastac
    JOM, 2004, 56 : 43 - 43
  • [23] Stormwater treatment: examples of computational fluid dynamics modeling
    Gaoxiang Ying
    John Sansalone
    Srikanth Pathapati
    Giuseppina Garofalo
    Marco Maglionico
    Andrea Bolognesi
    Alessandro Artina
    Frontiers of Environmental Science & Engineering, 2012, 6 : 638 - 648
  • [24] Computational fluid dynamics modeling of a commercial diving incident
    Kemper B.
    Cross L.
    Journal of the National Academy of Forensic Engineers, 2021, 38 (01): : 105 - 117
  • [25] COMPUTATIONAL FLUID DYNAMICS MODELING TOWARD CLEAN COMBUSTION
    Dinesh, K. K. J. Ranga
    Kirkpatrick, M. P.
    Odedra, A.
    COMPUTATIONAL THERMAL SCIENCES, 2012, 4 (01): : 49 - 65
  • [26] Computational Fluid Dynamics Modeling of Liver Radioembolization: A Review
    Jorge Aramburu
    Raúl Antón
    Macarena Rodríguez-Fraile
    Bruno Sangro
    José Ignacio Bilbao
    CardioVascular and Interventional Radiology, 2022, 45 : 12 - 20
  • [27] Computational Fluid Dynamics Modeling of High Temperature Furnaces
    Kilinc, Cuma
    Iskender, Umit
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2020, 23 (01): : 241 - 247
  • [28] Review of the computational fluid dynamics modeling of fuel cells
    Ma, L.
    Ingham, D. B.
    Pourkashanian, M.
    Carcadea, E.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2005, 2 (04): : 246 - 257
  • [29] Stormwater treatment: examples of computational fluid dynamics modeling
    Ying, Gaoxiang
    Sansalone, John
    Pathapati, Srikanth
    Garofalo, Giuseppina
    Maglionico, Marco
    Bolognesi, Andrea
    Artina, Alessandro
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2012, 6 (05) : 638 - 648
  • [30] Computational Fluid Dynamics Modeling of a Natural Ventilated Building
    Idriss, A. I.
    Dabar, O. A.
    Mohamed, M-A. A.
    JOURNAL OF ELECTRICAL SYSTEMS, 2018, 14 (03) : 51 - 62