Comprehensive analysis and parametric optimization of a CCP (combined cooling and power) system driven by geothermal source

被引:41
|
作者
Zhao, Yajing [1 ]
Wang, Jiangfeng [1 ]
Cao, Liyan [1 ]
Wang, Yu [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, State Key Lab Multiphase Flow Power Engn, Inst Turbomachinery, Xian 710049, Peoples R China
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
基金
中国国家自然科学基金;
关键词
Exergoeconomic analysis; Exergy analysis; Geothermal energy; CCP; Optimization; ORGANIC RANKINE-CYCLE; LOW-GRADE HEAT; EXERGOECONOMIC ANALYSIS; THERMODYNAMIC ANALYSIS; THERMOECONOMIC OPTIMIZATION; GENERAL CORRELATION; ECONOMIC-ANALYSIS; BINARY-CYCLE; GAS-TURBINE; REFRIGERATION;
D O I
10.1016/j.energy.2016.01.003
中图分类号
O414.1 [热力学];
学科分类号
摘要
A CCP (combined cooling and power) system, which integrated a flash-binary power generation system with a bottom combined cooling and power subsystem operating through the combination of an organic Rankine cycle and an ejector refrigeration cycle, was developed to utilize geothermal energy. Thermodynamic and exergoeconomic analyses were performed on the system. A performance indicator, namely the average levelized costs per unit of exergy products for the overall system, was developed to assess the exergoeconomic performance of the system. The effects of four key parameters including flash pressure, pinch point temperature difference in the vapor generator, inlet pressure and back pressure of the ORC turbine on the system performance were evaluated through a parametric analysis. Two single objective optimizations were conducted to reach the maximum exergy efficiency and the minimum average levelized costs per unit of exergy products for the overall system, respectively. The optimization results implied that the most exergoeconomically effective system couldn't obtain the best system thermodynamic performance and vice versa. An exergy analysis based on the thermodynamic optimization result revealed that the biggest exergy destruction occurred in the vapor generator and the next two largest exergy destruction were respectively caused by the steam turbine and the flashing device. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:470 / 487
页数:18
相关论文
共 50 条
  • [21] Innovative geothermal-based power and cooling cogeneration system; Thermodynamic analysis and optimization
    Wang, Yinling
    Yu, Lei
    Nazir, Babar
    Zhang, Liang
    Rahmani, Hamidreza
    Sustainable Energy Technologies and Assessments, 2021, 44
  • [22] Parametric analysis and optimization of a building cooling heating power system driven by solar energy based on organic working fluid
    Wang, Jiangfeng
    Yan, Zhequan
    Wang, Man
    Song, Yuhui
    Dai, Yiping
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (12) : 1465 - 1474
  • [23] Optimization and Analysis of Operation Strategies for Combined Cooling, Heating and Power System
    Li, Zhengyi
    Huo, Zhaoyi
    Yin, Hongchao
    2011 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2011,
  • [24] Multi-objective optimization of combined cooling, heating and power system integrated with solar and geothermal energies
    Ren, Fukang
    Wang, Jiangjiang
    Zhu, Sitong
    Chen, Yi
    ENERGY CONVERSION AND MANAGEMENT, 2019, 197
  • [25] Performance optimization and multi-objective analysis of an innovative solar-driven combined power and cooling system
    Yadav, Vinay Kumar
    Sarkar, Jahar
    Ghosh, Pradyumna
    ENERGY AND BUILDINGS, 2024, 307
  • [26] Parametric Study of Combined Cooling and Power (CCP) Plant Integrated with Parabolic Trough Solar Collectors (PTSCs)
    Khatti, Shakir Shakoor
    Memon, Abdul Ghafoor
    Qureshi, Samiullah
    2019 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL AND ENERGY ENGINEERING (IC3E 2019), 2019, 281
  • [27] Performance investigation of a new geothermal combined cooling, heating and power system
    Wang, Jianyong
    Ren, Chenxing
    Gao, Yaonan
    Chen, Haifeng
    Dong, Jixian
    ENERGY CONVERSION AND MANAGEMENT, 2020, 208
  • [28] A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source
    Gholizadeh, Towhid
    Vajdi, Mohammad
    Rostamzadeh, Hadi
    RENEWABLE ENERGY, 2020, 148 (148) : 31 - 43
  • [29] Off-design performance analysis of a combined cooling and power system driven by low-grade heat source
    Du, Yang
    Han, Pengfei
    Qiang, Xiongchao
    Hao, Muting
    Long, Ying
    Zhao, Pan
    Dai, Yiping
    ENERGY CONVERSION AND MANAGEMENT, 2018, 159 : 327 - 341