Blossoming and Hermite-Pade approximation for hypergeometric series
被引:1
|
作者:
Ait-Haddou, Rachid
论文数: 0引用数: 0
h-index: 0
机构:
King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
Ait-Haddou, Rachid
[1
]
Mazure, Marie-Laurence
论文数: 0引用数: 0
h-index: 0
机构:
Univ Grenoble Alpes, CNRS, Lab Jean Kuntzmann, F-38000 Grenoble, FranceKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
Mazure, Marie-Laurence
[2
]
机构:
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Univ Grenoble Alpes, CNRS, Lab Jean Kuntzmann, F-38000 Grenoble, France
Based on the blossoming theory, in this work we develop a new method for deriving Hermite-Pade approximants of certain hypergeometric series. Its general principle consists in building identities generalising the Hermite identity for exponentials, and in then applying their blossomed versions to appropriate tuples to simultaneously produce explicit expressions of the approximants and explicit integral representations of the corresponding remainders. For binomial series we use classical blossoms while for q-hypergeometric series we have to use q-blossoms.