Local Lattice Deformation of Tellurene Grain Boundaries by Four-Dimensional Electron Microscopy

被引:6
|
作者
Londono-Calderon, Alejandra [1 ]
Williams, Darrick J. [1 ]
Schneider, Matthew [2 ]
Savitzky, Benjamin H. [3 ]
Ophus, Colin [3 ]
Pettes, Michael T. [1 ]
机构
[1] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Mat Sci & Technol Div, Mat Sci Radiat & Dynam Extremes MST 8, Los Alamos, NM 87545 USA
[3] Lawrence Berkeley Natl Lab, Mol Foundry, NCEM, Berkeley, CA 94720 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2021年 / 125卷 / 06期
关键词
RAMAN-SPECTRUM; TRANSPORT;
D O I
10.1021/acs.jpcc.1c00308
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional (2D) tellurene is a promising competitor for the fabrication of ultrathin optoelectronic devices belonging to a new family of monoelemental 2D materials. The precise fabrication and characterization of tellurene and its lattice defects is of utmost importance to determine device reliability and predict functionality, yet it remains experimentally challenging. The rapid growth of the four-dimensional scanning transmission electron microscopy (4D-STEM) technique as well as postprocessing tools now allows for structural analysis with nanometer-scale resolution over a broad range of length scales. Here, we use 4D-STEM to reveal the three-dimensional (3D) atomic structure of the characteristic grain boundary in 2D tellurium formed through a new microwave-enabled chemical self-assembly. Strain and lattice parameter maps permit the reconstruction of the roughness of the grain boundary and suggest that its formation is promoted by a wedge of helical atomic chains along the [0001] crystallographic direction. The observation of wrinkles at the grain boundary is found to be the dominant relaxation mechanism. Insights into the formation mechanism are elucidated by mapping the lattice parameters as the first demonstration of local in-plane and out-of-plane unit cell variation in a nanometer-by-nanometer real-space array.
引用
收藏
页码:3396 / 3405
页数:10
相关论文
共 50 条
  • [21] Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy
    Renske M. van der Veen
    Oh-Hoon Kwon
    Antoine Tissot
    Andreas Hauser
    Ahmed H. Zewail
    Nature Chemistry, 2013, 5 : 395 - 402
  • [22] Author Correction: Manifold learning of four-dimensional scanning transmission electron microscopy
    Xin Li
    Ondrej E. Dyck
    Mark P. Oxley
    Andrew R. Lupini
    Leland McInnes
    John Healy
    Stephen Jesse
    Sergei V. Kalinin
    npj Computational Materials, 6
  • [23] Quantum and classical Fisher information in four-dimensional scanning transmission electron microscopy
    Dwyer, Christian
    Paganin, David M.
    PHYSICAL REVIEW B, 2024, 110 (02)
  • [24] On the four-dimensional lattice spring model for geomechanics
    Zhao, Gao-Feng
    Hu, Xiaodong
    Li, Qin
    Lian, Jijian
    Ma, Guowei
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2018, 10 (04) : 661 - 668
  • [26] Four-dimensional microscopy of defects in integrated circuits
    Miranda, JJ
    Saloma, C
    APPLIED OPTICS, 2003, 42 (32) : 6520 - 6524
  • [27] Noncommutative deformation of four-dimensional Einstein gravity
    Cardella, MA
    Zanon, D
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (08) : L95 - L103
  • [28] Fission dynamics in the four-dimensional deformation space
    Pomorski, K
    Bartel, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2006, 15 (02) : 417 - 425
  • [29] Disentangling Magnetic and Grain Contrast in Polycrystalline FeGe Thin Films Using Four-Dimensional Lorentz Scanning Transmission Electron Microscopy
    Nguyen, Kayla X.
    Zhang, Xiyue S.
    Turgut, Emrah
    Cao, Michael C.
    Glaser, Jack
    Chen, Zhen
    Stolt, Matthew J.
    Chang, Celesta S.
    Shao, Yu-Tsun
    Jin, Song
    Fuchs, Gregory D.
    Muller, David A.
    PHYSICAL REVIEW APPLIED, 2022, 17 (03):
  • [30] Four-dimensional superconformal theories with interacting boundaries or defects
    Erdmenger, J
    Guralnik, Z
    Kirsch, I
    PHYSICAL REVIEW D, 2002, 66 (02):