Effects of experimental warming, precipitation increase and their interaction on AM fungal community in an alpine grassland of the Qinghai-Tibetan Plateau

被引:16
|
作者
Wei, Xiaoting [1 ]
Shi, Yanan [1 ]
Qin, Fuwen [1 ]
Zhou, Huakun [2 ]
Shao, Xinqing [1 ,3 ]
机构
[1] China Agr Univ, Coll Grassland Sci & Technol, Beijing 100193, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Restorat Ecol Cold Area Qinghai Prov, Xining 810008, Peoples R China
[3] Qinghai Prov Key Lab Adapt Management Alpine Gras, Xining 810000, Peoples R China
基金
中国国家自然科学基金;
关键词
Experimental warming; Precipitation increase; AM fungi; Alpine steppe; Plant community; Network analysis; ARBUSCULAR MYCORRHIZAL FUNGI; CLIMATE-CHANGE; PHYLOGENETIC STRUCTURE; SPECIES COMPOSITION; PLANT-COMMUNITIES; DIFFERENT GENERA; SOIL; BIODIVERSITY; TEMPERATURE; RESPONSES;
D O I
10.1016/j.ejsobi.2020.103272
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Arbuscular mycorrhizal (AM) fungi coexist with most of terrestrial plants and participate in multiple ecosystem processes. Here we address AM fungal responses to experimental warming and a manipulation of precipitation as well as the interactions in the Qinghai-Tibetan Plateau, a hot spot region of climate change, and its associations with plant and soil characteristics. A complete randomized block experiment with warming (+2 degrees C, using open top chambers) and precipitation increase (elevated by 20%) artificially was conducted on the alpine steppe. Two years later, AM fungal community diversity and composition in the soil were analyzed with high throughput sequencing. Results showed that AM fungal community in soil was unaffected by experimental warming, precipitation increase and their interaction, including alpha-diversity and community composition and only the relative abundance of a few species changed. Most species had little connections according to the network analysis and only a few species had dense connections with others, which accorded with the characteristics of scale-free network. Besides, over 70% correlations were positive. The richness of AM fungal community was negatively correlated with sedges biomass. Besides, the relative abundance of Gigasporaceae showed a positive correlation with sedge biomass which decreased under warming treatment and soil water content, and the relative abundance of Paraglomeraceae was negatively correlated with legume biomass that increased under precipitation increase and the interaction treatment. This study demonstrated the stability of AM fungi community under short-term climate changes. Besides, correlations between AM fungal abundance at the family level and plant functional group biomass proved the connectivity of above-ground and below-ground ecosystems.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Effects of Strong Earthquake on Plant Species Composition, Diversity, and Productivity of Alpine Grassland on Qinghai-Tibetan Plateau
    Zuo, Hui
    Shen, Hao
    Dong, Shikui
    Wu, Shengnan
    He, Fengcai
    Zhang, Ran
    Wang, Ziying
    Shi, Hang
    Hao, Xinghai
    Tan, Youquan
    Ma, Chunhui
    Li, Shengmei
    Liu, Yongqi
    Zhang, Feng
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [32] Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009
    DING MingJun
    ZHANG YiLi
    SUN XiaoMin
    LIU LinShan
    WANG ZhaoFeng
    BAI WanQi
    Science Bulletin, 2013, (03) : 396 - 405
  • [33] Optimization yak grazing stocking rate in an alpine grassland of Qinghai-Tibetan Plateau, China
    Quan-Ming Dong
    Xin-Quan Zhao
    Gao-Lin Wu
    Xiao-Feng Chang
    Environmental Earth Sciences, 2015, 73 : 2497 - 2503
  • [34] The perception of the alpine grassland adaptive management on the Qinghai-Tibetan Plateau: The concept and its implementation
    Yang, Xiaoxia
    Zhao, Xinquan
    Dong, Quanmin
    Yu, Yang
    Liu, Wenting
    Zhang, Chunping
    Cao, Quan
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (19): : 2526 - 2536
  • [35] Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009
    Ding MingJun
    Zhang YiLi
    Sun XiaoMin
    Liu LinShan
    Wang ZhaoFeng
    Bai WanQi
    CHINESE SCIENCE BULLETIN, 2013, 58 (03): : 396 - 405
  • [36] Optimization yak grazing stocking rate in an alpine grassland of Qinghai-Tibetan Plateau, China
    Dong, Quan-Ming
    Zhao, Xin-Quan
    Wu, Gao-Lin
    Chang, Xiao-Feng
    ENVIRONMENTAL EARTH SCIENCES, 2015, 73 (05) : 2497 - 2503
  • [37] Quantifying Degradation Classifications on Alpine Grassland in the Lhasa River Basin, Qinghai-Tibetan Plateau
    Han, Wangya
    Lu, Huiting
    Liu, Guohua
    Wang, Jingsheng
    Su, Xukun
    SUSTAINABILITY, 2019, 11 (24)
  • [38] Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009
    DING MingJun
    ZHANG YiLi
    SUN XiaoMin
    LIU LinShan
    WANG ZhaoFeng
    BAI WanQi
    Chinese Science Bulletin, 2013, 58 (03) : 396 - 405
  • [39] Grazing intensity modifies alpine grassland fine root traits on the Qinghai-Tibetan Plateau
    Xiang, Mingxue
    Luo, Ruikang
    Wu, Junxi
    Niu, Ben
    Pan, Ying
    Zhang, Xianzhou
    Duo, Lha
    Ma, Tao
    Han, Chenglong
    PLANT ECOLOGY, 2025, : 363 - 374
  • [40] Reproductive responses of alpine plants to grassland degradation and artificial restoration in the Qinghai-Tibetan Plateau
    Dong, S. K.
    Wang, X. X.
    Liu, S. L.
    Li, Y. Y.
    Su, X. K.
    Wen, L.
    Zhu, L.
    GRASS AND FORAGE SCIENCE, 2015, 70 (02) : 229 - 238