Data assimilation of simulated SSS SMOS products in an ocean forecasting system

被引:5
|
作者
Tranchant, B.
Testut, C-E
Ferry, N.
Renault, L.
Obligis, E.
Boone, C.
Larnicol, G.
机构
关键词
D O I
10.1080/1755876X.2008.11020099
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Sea Surface Salinity (SSS) measured from the future Soil Moisture and Ocean Salinity (SMOS) satellite has to be considered as a new type of data. This paper addresses the impact of assimilating two different simulated SSS data types (raw track observations versus a gridded processed product) in an ocean forecasting system through an Observing System Simulation Experiment (OSSE). The OSSE consists of hindcast experiments assimilating an operational dataset of Sea Surface Temperature (SST), in-situ profiles of temperature and salinity and Sea Level Anomalies (SLA) plus various simulated SMOS SSS data. These assimilation experiments use an eddy permitting model (1/3 degrees) covering the North Atlantic from 20 degrees S to 70 degrees N and a multivarlate assimilation system referred to as SAM2vl. This assimilation scheme is a Reduced Order Kalman Filter using a 3D multivariate modal decomposition of the forecast error covariance. The OSSE enables an illustration of the impact of SSS assimilation on a Mercator Ocean regional forecasting system. Several conclusions can be highlighted, such as the importance of the consistency of space/time scales between the data products and the ocean prediction systems used. This study should be viewed as a preliminary step for assimilation of SSS measured from space in an ocean forecasting system
引用
收藏
页码:19 / 27
页数:9
相关论文
共 50 条
  • [32] Ensemble data assimilation with the CNMCA regional forecasting system
    Bonavita, Massimo
    Torrisi, Lucio
    Marcucci, Francesca
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (646) : 132 - 145
  • [33] An ocean data assimilation system and reanalysis of the World Ocean hydrophysical fields
    A. A. Zelenko
    R. M. Vil’fand
    Yu. D. Resnyanskii
    B. S. Strukov
    M. D. Tsyrulnikov
    P. I. Svirenko
    Izvestiya, Atmospheric and Oceanic Physics, 2016, 52 : 443 - 454
  • [34] An Ocean Data Assimilation System and Reanalysis of the World Ocean Hydrophysical Fields
    Zelenko, A. A.
    Vil'fand, R. M.
    Resnyanskii, Yu. D.
    Strukov, B. S.
    Tsyrulnikov, M. D.
    Svirenko, P. I.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2016, 52 (04) : 443 - 454
  • [35] SMOS NEURAL NETWORK SOIL MOISTURE DATA ASSIMILATION
    Rodriguez-Fernandez, N. J.
    de Rosnay, P.
    Albergel, C.
    Aires, F.
    Prigent, C.
    Richaume, P.
    Kerr, Y. H.
    Drusch, M.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5548 - 5551
  • [36] Impact of data assimilation in the Coastal Ocean Forecast System
    Kelley, JGW
    Thiebaux, HJ
    Chalikov, D
    Behringer, DW
    Balasubramaniyan, B
    SECOND CONFERENCE ON COASTAL ATMOSPHERIC AND OCEANIC PREDICTION AND PROCESSES, 1998, : 7 - 10
  • [37] An Ensemble Ocean Data Assimilation System for Seasonal Prediction
    Yin, Yonghong
    Alves, Oscar
    Oke, Peter R.
    MONTHLY WEATHER REVIEW, 2011, 139 (03) : 786 - 808
  • [38] Impacts of data assimilation on the global ocean carbonate system
    Visinelli, L.
    Masina, S.
    Vichi, M.
    Storto, A.
    Lovato, T.
    JOURNAL OF MARINE SYSTEMS, 2016, 158 : 106 - 119
  • [39] A Hybrid Global Ocean Data Assimilation System at NCEP
    Penny, Stephen G.
    Behringer, David W.
    Carton, James A.
    Kalnay, Eugenia
    MONTHLY WEATHER REVIEW, 2015, 143 (11) : 4660 - 4677
  • [40] Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact
    Martin, A. J.
    Hines, A.
    Bell, M. J.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2007, 133 (625) : 981 - 995