Dynamical and structural properties of a granular model for a magnetorheological fluid

被引:16
|
作者
Donado, F. [1 ]
Sausedo-Solorio, J. M. [1 ]
Moctezuma, R. E. [2 ]
机构
[1] Univ Autonoma Estado Hidalgo, Inst Ciencias Basicas & Ingn, Pachuca 42184, Hidalgo, Mexico
[2] Univ Autonoma San Luis Potosi, CONACYT Inst Fis Manuel Sandoval Vallarta, Alvaro Obregon 64, San Luis Potosi 78000, Slp, Mexico
关键词
STRONGLY DIPOLAR FLUIDS; LIVING POLYMERS; GLASS-TRANSITION; BROWNIAN-MOTION; LOW-DENSITIES; MONTE-CARLO; AGGREGATION; PARTICLE; RELAXATION; COLLOIDS;
D O I
10.1103/PhysRevE.95.022601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a two-dimensional nonvibrating granular system as a model of a magnetorheological fluid. The system is composed of magnetic steel particles on a horizontal plane under a vertical sinusoidal magnetic field and a horizontal static magnetic field. When the amplitude of the horizontal field is zero, we find that the motion of the particles has characteristics similar to those of Brownian particles. A slowing down of the dynamics is observed as the particle concentration increases or the magnitude of the vertical magnetic field decreases. When the amplitude of the horizontal field is nonzero, the particles interact through effective dipolar interactions. Above a threshold in the amplitude of the horizontal field, particles form chains that become longer and more stable as time increases. For some conditions, at short time intervals, the average chain length as a function of time exhibits scaling behavior. The chain length distribution at a given time is a decreasing exponential function. The behavior of this granular system is consistent with theoretical and experimental results for magnetorheological fluids.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Investigation and Simulation on Magnetic Hysteresis Properties of Magnetorheological Fluid
    Zeng, Jianbin
    Guo, Youguang
    Zhu, Jianguo
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (02) : 1611 - 1616
  • [32] Influence of temperature on magnetorheological fluid properties and damping performance
    Kariganaur, Ashok Kumar
    Kumar, Hemantha
    Arun, M.
    SMART MATERIALS AND STRUCTURES, 2022, 31 (05)
  • [33] Effects of Nano-Diamond on Magnetorheological Fluid Properties
    Zhao, Mingmei
    Zhang, Jinqiu
    Yao, Jun
    Peng, Zhizhao
    NANO, 2017, 12 (10)
  • [34] Linear Motion Actuator Using Magnetorheological Fluid Properties
    Calarasu, Doru
    Scurtu, Dan
    Ciobanu, Bogdan
    ENGINEERING SOLUTIONS AND TECHNOLOGIES IN MANUFACTURING, 2014, 657 : 629 - 633
  • [35] The Influence of Additives on the Rheological and Sedimentary Properties of Magnetorheological Fluid
    Zhang, Xiangcheng
    Liu, Xiaotong
    Ruan, Xiaohui
    Zhao, Jun
    Gong, Xinglong
    FRONTIERS IN MATERIALS, 2021, 7
  • [36] AI-based prediction of magnetorheological fluid properties
    Morand L.
    Butz A.
    Bierwisch C.
    Konstruktion, 2023, 75 (7-8): : 58 - 62
  • [37] Rheological properties analysis and experiment of magnetorheological fluid for automobile
    Jia, Yongshu
    Zhou, Kongkang
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2009, 45 (06): : 246 - 250
  • [38] Internal organizational measurement for control of magnetorheological fluid properties
    Lloyd, John R.
    Hayesmichel, Miquel O.
    Radcliffe, Clark J.
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2007, 129 (04): : 423 - 428
  • [39] A Model Reference Adaptive Control of a Magnetorheological Fluid Brake
    Russo, R.
    Terzo, M.
    ADAPTIVE, ACTIVE AND MULTIFUNCTIONAL SMART MATERIALS SYSTEMS, 2013, 77 : 96 - 102
  • [40] A phenomenological model of magnetorheological damper considering fluid deficiency
    Jiang, Rilang
    Rui, Xiaoting
    Wei, Min
    Yang, Fufeng
    Zhu, Hongtao
    Gu, Lilin
    JOURNAL OF SOUND AND VIBRATION, 2023, 562