An application of convolutional neural networks for automatic inspection

被引:0
|
作者
Calderon-Martinez, Jose A. [1 ]
Carnpoy-Cervera, Pascual [2 ]
机构
[1] Inst Tecnol Aguscalientes, Dept Elect & Elect Engn, Aguscalientes 20256, Mexico
[2] Univ Politecn Madrid, Dept Automat Control Elect Engn & Ind Comp, E-28006 Madrid, Spain
关键词
automatic inspection; artificial vision; convolutional neural networks; filters;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic inspection in today's manufacturing is critical to be competitive. In this paper experimental results from the application of digital filters for defects detection in paper pulp production are shown. These filters have been automatically generated by means of a convolutional neural architecture, that uses a modified back-propagation algorithm. The main subjects discussed are: Convolutional Top-Down Spiral Architecture a tool used to automatically generate digital filters, a simple but effective modification to the back-propagation algorithm for this application, and experimental results.
引用
收藏
页码:492 / +
页数:3
相关论文
共 50 条
  • [11] Convolutional Neural Networks for Automatic Virtual Metrology
    Hsieh, Yu-Ming
    Wang, Tan-Ju
    Lin, Chin-Yi
    Peng, Li-Hsuan
    Cheng, Fan-Tien
    Shang, Sui-Yan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03): : 5720 - 5727
  • [12] Convolutional neural networks for automatic meter reading
    Laroca, Rayson
    Barroso, Victor
    Diniz, Matheus A.
    Goncalves, Gabriel R.
    Schwartz, William Robson
    Menotti, David
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (01)
  • [13] Application of neural networks to baggage inspection
    Northwestern Polytechnical Univ, Xi'an, China
    Neural Network World, 6 (631-640):
  • [14] Application of Two Hopfield Neural Networks for Automatic Four-Element LED Inspection
    Chang, Chuan-Yu
    Li, Chun-Hsi
    Lin, Si-Yan
    Jeng, MuDer
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2009, 39 (03): : 352 - 365
  • [15] Automatic playlist generation using Convolutional Neural Networks and Recurrent Neural Networks
    Irene, Rosilde Tatiana
    Borrelli, Clara
    Zanoni, Massimiliano
    Buccoli, Michele
    Sarti, Augusto
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [16] Anomaly detection with convolutional neural networks for industrial surface inspection
    Staar, Benjamin
    Luetjen, Michael
    Freitag, Michael
    12TH CIRP CONFERENCE ON INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING, 2019, 79 : 484 - 489
  • [17] Customized Convolutional Neural Networks Technology for Machined Product Inspection
    Huang, Yi-Cheng
    Hung, Kuo-Chun
    Liu, Chun-Chang
    Chuang, Ting-Hsueh
    Chiou, Shean-Juinn
    APPLIED SCIENCES-BASEL, 2022, 12 (06):
  • [18] Automatic and Robust Object Detection in X-Ray Baggage Inspection Using Deep Convolutional Neural Networks
    Gu, Bangzhong
    Ge, Rongjun
    Chen, Yang
    Luo, Limin
    Coatrieux, Gouenou
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (10) : 10248 - 10257
  • [19] A Framework for Wildfire Inspection Using Deep Convolutional Neural Networks
    Novac, Iuliu
    Geipel, Kenneth Richard
    Gil, Jacobo Eduardo de Domingo
    de Paula, Lucas Goncalves
    Hyttel, Kristian
    Chrysostomou, Dimitrios
    2020 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2020, : 867 - 872
  • [20] Automatic vehicle type classification with convolutional neural networks
    Roecker, Max N.
    Costa, Yandre M. G.
    Almeida, Joao L. R.
    Matsushita, Gustavo H. G.
    2018 25TH INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP), 2018,