Ni-rich LiNi0.6Co0.2Mn0.2O2 nanoparticles enwrapped by a 3D graphene erogel network as a high-performance cathode material for Li-ion batteries

被引:29
|
作者
Tian, Xiaohui [1 ]
Zhu, Yanbin [1 ]
Tang, Zhihao [1 ]
Xie, Pengfei [1 ]
Natarajan, Angulakshmi [1 ]
Zhou, Yingke [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Mat & Met, Inst Adv Mat & Nanotechnol, State Key Lab Refractories & Met, Wuhan 430081, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Nickel-rich LiNi0.6Co0.2Mn0.2O2; Nanoparticle; Graphene aerogel; Porous structure; Li-ion battery; ELECTROCHEMICAL PERFORMANCE; THERMAL-STABILITY; HIGH-ENERGY; VOLTAGE; OXIDE; COMPOSITE; LIFEPO4; CYCLE;
D O I
10.1016/j.ceramint.2019.07.247
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A unique 3D porous graphene aerogel wrapped LiNi0.6Co0.2Mn0.2O2 nanoparticle composite (NCM@GA) was prepared via a facile coprecipitation followed with a hydrothermal treatment. The morphological and structural characterizations reveal that the graphene nanosheets adhere tightly to the NCM nanoparticle surface and randomly intertwine to form a three-dimensional porous conductive aerogel network. The galvanostatic charge/discharge tests imply that the NCM@GA composite displays a high initial discharge capacity of 189.9 mAh g(-1) (0.1 C), an excellent rate capability of 130.9 mAh g(-1) (5 C) and 106.8 mAh g(-1) (10 C), and an outstanding cyclic stability (an average decay rate of approximately 0.04% over 200 cycles at 1 C). The outstanding electrochemical performance is due to the synergy between the porous GA framework and the well-dispersed NCM nanoparticles, which facilitates the rapid diffusion of both Li+ and electrons and accommodates the volumetric change during the Li+ insertion/deinsertion process. The novel electrode design strategy described here is promising for constructing other advanced composite cathodes used in power Li-ion batteries.
引用
收藏
页码:22233 / 22240
页数:8
相关论文
共 50 条
  • [41] Synthesis and electrochemical performance of LiNi0.6Co0.2Mn0.2O2/reduced graphene oxide cathode materials for lithium-ion batteries
    Peng Yue
    Zhixing Wang
    Qian Zhang
    Guochun Yan
    Huajun Guo
    Xinhai Li
    Ionics, 2013, 19 : 1329 - 1334
  • [42] Synthesis and characterization of concentration-gradient LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries
    Liang, Longwei
    Du, Ke
    Lu, Wei
    Peng, Zhongdong
    Cao, Yanbing
    Hu, Guorong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 613 : 296 - 305
  • [43] Revisiting the initial irreversible capacity loss of LiNi0.6Co0.2Mn0.2O2 cathode material batteries
    Hu, Qiao
    Wu, Yanzhou
    Ren, Dongsheng
    Liao, Jiaying
    Song, Youzhi
    Liang, Hongmei
    Wang, Aiping
    He, Yufang
    Wang, Li
    Chen, Zonghai
    He, Xiangming
    ENERGY STORAGE MATERIALS, 2022, 50 : 373 - 379
  • [44] Synthesis and electrochemical performance of LiNi0.6Co0.2Mn0.2O2/reduced graphene oxide cathode materials for lithium-ion batteries
    Yue, Peng
    Wang, Zhixing
    Zhang, Qian
    Yan, Guochun
    Guo, Huajun
    Li, Xinhai
    IONICS, 2013, 19 (10) : 1329 - 1334
  • [45] Rheological phase method synthesis of carbon-coated LiNi0.6Co0.2Mn0.2O2 as the cathode material of high-performance lithium-ion batteries
    Tian Xie
    Fugen Sun
    Xiaoqing Zhou
    Li Liu
    Zhenyuan Liu
    Liekai Liu
    Zilong Wu
    Zhihao Yue
    Lang Zhou
    Hao Tang
    Applied Physics A, 2018, 124
  • [46] Rheological phase method synthesis of carbon-coated LiNi0.6Co0.2Mn0.2O2 as the cathode material of high-performance lithium-ion batteries
    Xie, Tian
    Sun, Fugen
    Zhou, Xiaoqing
    Liu, Li
    Liu, Zhenyuan
    Liu, Liekai
    Wu, Zilong
    Yue, Zhihao
    Zhou, Lang
    Tang, Hao
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (10):
  • [47] Co-precipitation synthesis of Ni0.6CO0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6CO0.2Mn0.2O2 cathode material for secondary lithium batteries
    Liang, Longwei
    Du, Ke
    Peng, Zhongdong
    Cao, Yanbing
    Duan, Jianguo
    Jiang, Jianbing
    Hu, Guorong
    ELECTROCHIMICA ACTA, 2014, 130 : 82 - 89
  • [48] Synthesis and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 as a concentration-gradient cathode material for lithium batteries
    Liang, Long-Wei
    Du, Ke
    Peng, Zhong-Dong
    Cao, Yan-Bing
    Hu, Guo-Rong
    CHINESE CHEMICAL LETTERS, 2014, 25 (06) : 883 - 886
  • [49] Synthesis and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 as a concentration-gradient cathode material for lithium batteries
    Long-Wei Liang
    Ke Du
    Zhong-Dong Peng
    Yan-Bing Cao
    Guo-Rong Hu
    ChineseChemicalLetters, 2014, 25 (06) : 883 - 886
  • [50] Role of current density in the degradation of LiNi0.6Co0.2Mn0.2O2 cathode material
    Wu, Borong
    Bi, Jiaying
    Liu, Qi
    Mu, Daobin
    Wang, Lei
    Fu, Jiale
    Wu, Feng
    ELECTROCHIMICA ACTA, 2019, 298 : 609 - 615