Cultivation of Chlorella vulgaris in Column Photobioreactor for Biomass Production and Lipid Accumulation

被引:9
|
作者
Wong, Y. K. [1 ,2 ]
Ho, K. C. [2 ]
Tsang, Y. F. [3 ,4 ]
Wang, L. [5 ]
Yung, K. K. L. [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Biol, Hong Kong, Hong Kong, Peoples R China
[2] Open Univ, Sch Sci & Technol, Hong Kong, Hong Kong, Peoples R China
[3] Hong Kong Inst Educ, Ctr Educ Environm Sustainabil, Tai Po, Hong Kong, Peoples R China
[4] Hong Kong Inst Educ, Dept Sci & Environm Studies, Room B3-2-F37,10 Lo Ping Rd, Tai Po, Hong Kong, Peoples R China
[5] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China
关键词
photobioreactor; Chlorella vulgaris; algal cultivation; lipid production; LIQUID INTERFACIAL AREA; WASTE-WATER TREATMENT; BUBBLE-COLUMN; MICROALGAE; BIOREACTORS; GROWTH; CULTURE; DESIGN;
D O I
10.2175/106143015X14362865227553
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microalgae have been used as energy resources in recent decades to mitigate the global energy crisis. As the demand for pure microalgae strains for commercial use increases, designing an effective photobioreactor (PBR) for mass cultivation is important. Chlorella vulgaris, a local freshwater microalga, was used to study the algal biomass cultivation and lipid production using various PBR configurations (bubbling, air-lift, porous air-lift). The results show that a bubbling column design is a better choice for the cultivation of Chlorella vulgaris than an air-lift one. The highest biomass concentration in the bubbling PBR was 0.78 g/L while the air-lift PBR had a value of 0.09 g/L. Key operating parameters, including draft-tube length and bubbling flowrate, were then optimized based on biomass production and lipid yield. The highest lipid content was in the porous air-lift PBR and the air-lift PBR with shorter draft tube (35 cm) was also better than a longer one (50 cm) for algal cultivation, but the microalgae attachment on the inner tube of PBR always occurred. The highest biomass concentration could be produced under the highest gas flowrate of 2.7 L/min, whereas the lowest dry cell mass was under the lowest gas flowrate of 0.2 L/min.
引用
收藏
页码:40 / 46
页数:7
相关论文
共 50 条
  • [21] Enhanced biomass and lipid production by co-cultivation of Chlorella vulgaris with Mesorhizobium sangaii under nitrogen limitation
    Wei, Zhijin
    Wang, Haonan
    Li, Xiao
    Zhao, Qianqian
    Yin, Yonghao
    Xi, Lijun
    Ge, Baosheng
    Qin, Song
    JOURNAL OF APPLIED PHYCOLOGY, 2020, 32 (01) : 233 - 242
  • [22] Enhanced biomass and lipid production by co-cultivation of Chlorella vulgaris with Mesorhizobium sangaii under nitrogen limitation
    Zhijin Wei
    Haonan Wang
    Xiao Li
    Qianqian Zhao
    Yonghao Yin
    Lijun Xi
    Baosheng Ge
    Song Qin
    Journal of Applied Phycology, 2020, 32 : 233 - 242
  • [23] Design, Fabrication and Performance Evaluation of a Photobioreactor for the Cultivation of Chlorella vulgaris (Beijerinck)
    Santiago, Denise Ester O.
    Demafelis, Rex B.
    Martinez-Goss, Milagrosa
    Nacorda, June Owen O.
    Torreta, Nerissa K.
    Bataller, Butch G.
    Redondo, Mark Jason H.
    Jao, Nickson L.
    Dizon, Lisa Stephanie H.
    PHILIPPINE JOURNAL OF CROP SCIENCE, 2013, 38 (02): : 21 - 29
  • [24] The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs
    Liu, Tingting
    Liu, Fei
    Wang, Chao
    Wang, Zhenyao
    Li, Yuqin
    BIORESOURCE TECHNOLOGY, 2017, 232 : 44 - 52
  • [25] Chlorella vulgaris cultivation using ricotta cheese whey as substrate for biomass production
    Nahuel E. Casá
    Julieta Lois-Milevicich
    Paola Alvarez
    Ricardo Mateucci
    Marina de Escalada Pla
    Journal of Applied Phycology, 2022, 34 : 745 - 756
  • [26] Chlorella vulgaris cultivation using ricotta cheese whey as substrate for biomass production
    Casa, Nahuel E.
    Lois-Milevicich, Julieta
    Alvarez, Paola
    Mateucci, Ricardo
    de Escalada Pla, Marina
    JOURNAL OF APPLIED PHYCOLOGY, 2022, 34 (02) : 745 - 756
  • [27] Comparison of Chlorella vulgaris and cyanobacterial biomass: cultivation in urban wastewater and methane production
    Lara Mendez
    Bruno Sialve
    Elia Tomás-Pejó
    Mercedes Ballesteros
    Jean Philippe Steyer
    Cristina González-Fernández
    Bioprocess and Biosystems Engineering, 2016, 39 : 703 - 712
  • [28] Comparison of Chlorella vulgaris and cyanobacterial biomass: cultivation in urban wastewater and methane production
    Mendez, Lara
    Sialve, Bruno
    Tomas-Pejo, Elia
    Ballesteros, Mercedes
    Steyer, Jean Philippe
    Gonzalez-Fernandez, Cristina
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2016, 39 (05) : 703 - 712
  • [29] OPTIMISATION OF BIOMASS, LIPID AND CARBOHYDRATE PRODUCTIVITIES IN Chlorella vulgaris FOR BIOFUEL PRODUCTION
    Nordin, Norazela
    Yusoff, Norjan
    Nadzir, Syafiqah Md
    Kamari, Azlan
    Yusoff, Mohd Zulkhairi Mohd
    JURNAL TEKNOLOGI-SCIENCES & ENGINEERING, 2022, 84 (02): : 47 - 57
  • [30] Two-stage mixotrophic cultivation for enhancing the biomass and lipid productivity of Chlorella vulgaris
    Cui, Hongwu
    Meng, Fanping
    Li, Feng
    Wang, Yuejie
    Duan, Weiyan
    Lin, Yichen
    AMB EXPRESS, 2017, 7